Sandhya Rani Gongada
Vasavi College of Engineering

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Power system contingency classification using machine learning technique Sandhya Rani Gongada; Muktevi Chakravarthy; Bhukya Mangu
Bulletin of Electrical Engineering and Informatics Vol 11, No 6: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v11i6.4031

Abstract

One of the most effective ways for estimating the impact and severity of line failures on the static security of the power system is contingency analysis. The contingency categorization approach uses the overall performance index to measure the system's severity (OPI). The newton raphson (NR) load flow technique is used to extract network variables in a contingency situation for each transmission line failure. Static security is categorised into five categories in this paper: secure (S), critically secure (CS), insecure (IS), highly insecure (HIS), and most insecure (MIS). The K closest neighbor machine learning strategy is presented to categorize these patterns. The proposed machine learning classifiers are trained on the IEEE 30 bus system before being evaluated on the IEEE 14, IEEE 57, and IEEE 118 bus systems. The suggested k-nearest neighbor (KNN) classifier increases the accuracy of power system security assessments categorization. A fuzzy logic approach was also investigated and implemented for the IEEE 14 bus test system to forecast the aforementioned five classifications.