Claim Missing Document
Check
Articles

Found 1 Documents
Search

Klasifikasi Jenis Buah Pisang Berdasarkan Citra Warna dengan Metode SVM Yusuf Amrozi; Dian Yuliati; Agung Susilo; Nur Novianto; Rikza Ramadhan
Jurnal Sisfokom (Sistem Informasi dan Komputer) Vol 11, No 3 (2022): NOVEMBER
Publisher : ISB Atma Luhur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32736/sisfokom.v11i3.1502

Abstract

Indonesia kaya dengan berbagai macam tanaman diantaranya buah pisang yang mempunyai beragam jenis. Untuk mengetahui tingkat kematangan pada suatu jenis pisang biasanya dilihat dari warna, akan tetapi karena  faktor usia dan kelelahan dari para petani biasanya sering terjadi kesalahan pada saat pengukuran akurasi. Penelitian ini bertujuan untuk mengklasifikasi jenis pisang berdasarkan citra warna dengan menggunakan algoritma Support Vector Machine (SVM). Data yang digunakan adalah citra pisang dengan total 1256, yang diklasifikasi menjadi 2 jenis pisang, Pisang ambon dan Pisang lady finger. Hasil yang didapat dari penelitian ini ditunjukan oleh confusion matrix dengan nilai True Positive (TP) = 0,82 dan False Positive (FP)= 0,18. serta False Negative (FN) = 0,02 dan True Negative (TN) = 0,98. Dari nilai yang ditunjukan oleh confusion matrix dapat diartikan bahwa algoritma SVM cukup baik digunakan dalam mengklasifikasi jenis pisang sehingga dapat memberikan jaminan mutu atas produk yang dihasilkan oleh petani.