Salama A. Mostafa
Universiti Tun Hussein Onn Malaysia, Parit Raja 86400, Johor, Malaysia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Deep Learning Approach for Prediction of Brain Tumor from Small Number of MRI Images Zulaikha N.I. Zailan; Salama A. Mostafa; Alyaa Idrees Abdulmaged; Zirawani Baharum; Mustafa Musa Jaber; Rahmat Hidayat
JOIV : International Journal on Informatics Visualization Vol 6, No 2-2 (2022): A New Frontier in Informatics
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.6.2.987

Abstract

Daily, the computer industry has been moving towards machine intelligence. Deep learning is a subfield of artificial intelligence (AI)'s machine learning (ML). It has AI features that mimic the functioning of the human brain in analyzing data and generating patterns for making decisions. Deep learning is gaining much attention nowadays because of its superior precision when trained with large data. This study uses the deep learning approach to predict brain tumors from medical images of magnetic resonance imaging (MRI). This study is conducted based on CRISP-DM methodology using three deep learning algorithms: VGG-16, Inception V3, MobileNet V2, and implemented by the Python platform. The algorithms predict a small number of MRI medical images since the dataset has only 98 image samples of benign and 155 image samples of malignant brain tumors. Subsequently, the main objective of this work is to identify the best deep learning algorithm that performs on small-sized datasets. The performance evaluation results are based on the confusion matrix criteria, accuracy, precision, and recall, among others. Generally, the classification results of the MobileNet-V2 tend to be higher than the other models since its recall value is 86.00%. For Inception-V3, it got the second highest accuracy, 84.00%, and the lowest accuracy is VGG-16 since it got 79.00%. Thus, in this work, we show that DL technology in the medical field can be more advanced and easier to predict brain tumors, even with a small dataset.
A Nested Monte Carlo Simulation Model for Enhancing Dynamic Air Pollution Risk Assessment Mustafa Hamid Hassan; Salama A. Mostafa; Zirawani Baharum; Aida Mustapha; Mohd Zainuri Saringat; Rita Afyenni
JOIV : International Journal on Informatics Visualization Vol 6, No 4 (2022)
Publisher : Politeknik Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.6.4.1228

Abstract

The risk assessment of air pollution is an essential matter in the area of air quality computing. It provides useful information supporting air quality (AQ) measurement and pollution control. The outcomes of the evaluation have societal and technical influences on people and decision-makers. The existing air pollution risk assessment employs different qualitative and quantitative methods. This study aims to develop an AQ-risk model based on the Nested Monte Carlo Simulation (NMCS) and concentrations of several air pollutant parameters for forecasting daily AQ in the atmosphere. The main idea of NMCS lies in two main parts, which are the Outer and Inner parts. The Outer part interacts with the data sources and extracts a proper sampling from vast data. It then generates a scenario based on the data samples. On the other hand, the Inner part handles the assessment of the processed risk from each scenario and estimates future risk. The AQ-risk model is tested and evaluated using real data sources representing crucial pollution. The data is collected from an Italian city over a period of one year. The performance of the proposed model is evaluated based on statistical indices, coefficient of determination (R2), and mean square error (MSE). R2 measures the prediction ability in the testing stage for both parameters, resulting in 0.9462 and 0.9073 prediction accuracy. Meanwhile, MSE produced average results of 9.7 and 10.3, denoting that the AQ-risk model provides a considerably high prediction accuracy.