This Author published in this journals
All Journal Jurnal Informatika
Fany Alifian Irawan
Mercu Buana University

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Penerapan Algoritma CNN Untuk Mengetahui Sentimen Masyarakat Terhadap Kebijakan Vaksin Covid-19 Fany Alifian Irawan; Dwi Anindyani Rochmah
Jurnal Informatika Vol 9, No 2 (2022): Oktober 2022
Publisher : LPPM Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31294/inf.v9i2.13257

Abstract

Jejaring sosial Twitter merupakan wadah bagi netizen dari seluruh dunia untuk bertukar pendapat dan argumen, beragam topik diangkat oleh netizen terutama permasalahan yang sedang hangat diperbincangkan atau menjadi perdebatan di khalayak umum. Salah satu topik yang hangat dibicarakan  netizen Indonesia yaitu mengenai Vaksin Covid-19 yang merupakan salah satu kebijakan pemerintah Indonesia dalam upaya menanggulangi pandemic Covid-19. Seperti kebijakan lainnya yang tak luput menimbulkan pro-kontra, kebijakan vaksin ini juga menjadi perbincangan pada jejaring Twitter. Atas dasar itu untuk mendapatkan informasi yang terdapat pada komentar netizen di jejaring sosial Twitter, maka diperlukan analisis sentimen dengan tujuan mengetahui sebagian respon masyarakat Indonesia mengenai kebijakan vaksin  sehingga dapat menjadi bahan pertimbangan pihak terkait dalam mengevaluasi kebijakan sehingga menjadi lebih baik. Analisa sentimen dilakukan dengan mengambil data komentar Twitter seputar vaksin yang dibuat menjadi dataset dengan dua polaritas sentimen positif dan negatif dengan nilai masing-masing sentimen sebesar 650 data. Dataset digunakan untuk menganalisa sentimen serta digunakan pada tahap pengujian tingkat akurasi algoritma. Berdasarkan hasil pengujian, algoritma Convolutional Neural Network memperoleh rata-rata nilai akurasi sebesar 98.66%, dengan algoritma pembanding yaitu Naïve Bayes yang memperoleh rata-rata nilai akurasi sebesar 94.66%. Hasil dari penelitian dapat disimpulkan bahwa kebijakan vaksinasi ini mendapatkan respon yang positif berdasarkan data komentar Twitter  yang berjumlah 1424 baris, sebanyak 950 komentar berpolaritas positif dengan persentase 66.7% dan 33.3% sisanya sejumlah 474 komentar berpolaritas negatif. Selain itu berdasarkan data Wordcloud diketahui sebagian besar komentar bermuatan negatif berisi dengan kata-kata yang menyiratkan efek samping dari vaksinasi terutama jenis vaksinasi booster.