Choo Wou Onn
Faculty of Data Science and Information Technology, INTI International University, Nilai,

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Optimization of Markov Weighted Fuzzy Time Series Forecasting Using Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) Sugiyarto Surono; Khang Wen Goh; Choo Wou Onn; Afif Nurraihan; Nauval Satriani Siregar; A. Borumand Saeid; Tommy Tanu Wijaya
Emerging Science Journal Vol 6, No 6 (2022): December
Publisher : Ital Publication

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/ESJ-2022-06-06-010

Abstract

The Markov Weighted Fuzzy Time Series (MWFTS) is a method for making predictions based on developing a fuzzy time series (FTS) algorithm. The MWTS has overcome certain limitations of FTS, such as repetition of fuzzy logic relationships and weight considerations of fuzzy logic relationships. The main challenge of the MWFTS method is the absence of standardized rules for determining partition intervals. This study compares the MWFTS model to the partition methods Genetic Algorithm-Fuzzy K-Medoids clustering (GA-FKM) and Fuzzy K-Medoids clustering-Particle Swarm Optimization (FKM-PSO) to solve the problem of determining the partition interval and develop an algorithm. Optimal partition optimization. The GA optimization algorithm’s performance on GA-FKM depends on optimizing the clustering of FKM to obtain the most significant partition interval. Implementing the PSO optimization algorithm on FKM-PSO involves maximizing the interval length following the FKM procedure. The proposed method was applied to Anand Vihar, India’s air quality data. The MWFTS method combined with the GA-FKM partitioning method reduced the mean absolute square error (MAPE) from 17.440 to 16.85%. While the results of forecasting using the MWFTS method in conjunction with the FKM-PSO partition method were able to reduce the MAPE percentage from 9.78% to 7.58%, the MAPE percentage was still 9.78%. Initially, the root mean square error (RMSE) score for the GA-FKM partitioning technique was 48,179 to 47,01. After applying the FKM-PSO method, the initial RMSE score of 30,638 was reduced to 24,863. Doi: 10.28991/ESJ-2022-06-06-010 Full Text: PDF
Comparison of Activation Functions in Convolutional Neural Network for Poisson Noisy Image Classification Khang Wen Goh; Sugiyarto Surono; M. Y. Firza Afiatin; K. Robiatul Mahmudah; Nursyiva Irsalinda; Mesith Chaimanee; Choo Wou Onn
Emerging Science Journal Vol 8, No 2 (2024): April
Publisher : Ital Publication

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/ESJ-2024-08-02-014

Abstract

Deep learning, specifically the Convolutional Neural Network (CNN), has been a significant technology tool for image processing and human health. CNNs, which mimic the working principles of the human brain, can learn robust representations of images. However, CNNs are susceptible to noise interference, which can impact classification performance. Choosing the right activation function can improve CNNs performance and accuracy. This research aims to test the accuracy of CNN with ResNet50, VGG16, and GoogleNet architectures combined with several activation functions such as ReLU, Leaky ReLU, Sigmoid, and Tanh in the classification of images that experience Poisson noise. Poisson noise is applied to each test data to evaluate CNN accuracy. The data used in this study consists of three scenarios of different numbers of classes, namely 3 classes, 5 classes, and 10 classes. The results showed that combining ResNet50 with the ReLU activation function produced the best performance in class recognition in each scenario of the number of classes experiencing Poisson noise interference. The model achieved 97% accuracy for 3-class data, 95% for 5-class data, and 90% for 10-class data. These results show that using ResNet50 with the ReLU activation function can provide excellent resistance to Poisson noise in image processing. It was found that as the number of classes increases, the accuracy of image recognition tends to decrease. This shows that the more complex the image classification task is with a larger number of classes, the more difficult it is for CNNs to distinguish between different classes. Doi: 10.28991/ESJ-2024-08-02-014 Full Text: PDF