Diego Costa Pinto
NOVA Information Management School (NOVA IMS), Universidade Nova de Lisboa, Campus de Campolide, 1070-312 Lisboa,

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

The Benefits of Automated Machine Learning in Hospitality: A Step-By-Step Guide and AutoML Tool Mauro Castelli; Diego Costa Pinto; Saleh Shuqair; Davide Montali; Leonardo Vanneschi
Emerging Science Journal Vol 6, No 6 (2022): December
Publisher : Ital Publication

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/ESJ-2022-06-06-02

Abstract

The manuscript presents a tool to estimate and predict data accuracy in hospitality by means of automated machine learning (AutoML). It uses a tree-based pipeline optimization tool (TPOT) as a methodological framework. The TPOT is an AutoML framework based on genetic programming, and it is particularly useful to generate classification models, for regression analysis, and to determine the most accurate algorithms and hyperparameters in hospitality. To demonstrate the presented tool’s real usefulness, we show that the TPOT findings provide further improvement, using a real-world dataset to convert key hospitality variables (customer satisfaction, loyalty) to revenue, with up to 93% prediction accuracy on unseen data. Doi: 10.28991/ESJ-2022-06-06-02 Full Text: PDF
The Role of Technology in the Learning Process: A Decision Tree-Based Model Using Machine Learning Yuri V. S. Mendonça; Paola G. Vinueza Naranjo; Diego Costa Pinto
Emerging Science Journal Vol 6 (2022): Special Issue "Current Issues, Trends, and New Ideas in Education"
Publisher : Ital Publication

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28991/ESJ-2022-SIED-020

Abstract

Machine learning approaches may establish a complex and non-linear relationship among input and response variables for the assessment of the Basic Education Development Index (IDEB) database and show indicators that may contribute to monitoring the quality of education. This paper uses extensive experimental databases from public schools, consisting of a case study in Brazil, to analyze data such as the physical and technological structure of schools and teacher profiles. The research proposes decision tree-based machine learning models for predictions of the best attributes to positively contribute to IDEB. It employs a newly developed SHapley Additive exPlanations (SHAP) approach to classify input variables, so to identify variables that impact the most the final model; a non-probabilistic sample was used, composed from three official databases of 450 schools, and 617 teachers. Results show that the number of computers per student, teachers’ service time, broadband internet access, investments in technology training for teachers, and computer labs in schools are the variables that have the greatest effect on IDEB. The model applied shows high prediction accuracy for test data (MSE = 0.2094 and R² = 0.8991). This article contributes to improving efficiency when monitoring parameters used to measure the quality of a teaching-learning process. Doi: 10.28991/ESJ-2022-SIED-020 Full Text: PDF