Claim Missing Document
Check
Articles

Found 2 Documents
Search

Optimalisasi Website dalam Mempromosikan Desa Wisata Sejarah Desa Kamal, Kecamatan Arjasa, Jember Dewi Silvia; Alfan Zain Ababil Asror; Muhammad Hasyim Asy’ari; Sri Mada Bintang; Muhammad Syauqi; Sekar Arum Srigati; Dzikriyah Risa Anggraini; Hafira Nur Syavitri; Zwidatul Husna; Savania Alifianty Hafzah; Eklezia Dwi Saputri
Dedikasi:Jurnal Pengabdian kepada Masyarakat Vol 3, No 1 (2022): Jurnal Dedikasi
Publisher : Universitas Jayabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31479/dedikasi.v3i1.218

Abstract

Desa Kamal merupakan salah satu desa di Kabupaten Jember yang berpotensi sebagai desa wisata, karena terdapat suatu peradaban sejarah yang menarik untuk ditelisik lebih dalam. Namun, sampai saat ini, masih sedikit informasi terkait peradaban sejarah di Desa Kamal yang terdapat di media sosial, sehingga masyarakat umum belum banyak mengetahui tentang situs sejarah yang merupakan bukti peradaban yang terdapat di Desa Kamal. Hal tersebut terjadi karena belum optimalnya pemanfaatan media sosial oleh perangkat desa dalam mempromosikan Desa Kamal sebagai destinasi wisata sejarah Kabupaten Jember.Oleh karena itu, diperlukan adanya optimalisasi website desa untuk mempromosikan sekaligus sebagai media informasi terkait situs sejarah Desa Kamal. Metode pelaksanaan dilakukan dengan cara melatih perangkat desa pemegang akun website yang dilanjutkan dengan diskusi dan survei terhadap perangkat desa. Berikutnya adalah mengimplementasikan hasil latihan agar lebih meningkatkan pemahaman terhadap pengelolaan website desa, sehingga menjadi media promosi dan memudahkan masyarakat untuk mengakses informasi terkait wisata sejarah situs Desa Kamal. Tujuan pelaksanaan program ini adalah menyediakan media untuk mempublikasikan segala potensi yang dimiliki Desa Kamal sehingga diharapkan website ini dapat terus diperbarui informasinya seputar situs sejarah Desa Kamal.
POTENSI KECERDASAN BUATAN DALAM PENINGKATAN AKURASI PEMBACAAN HASIL MAMOGRAFI: TINJAUAN SISTEMATIS DAN META-ANALISIS MUNAWIR, AL; Sekar Arum Srigati; Pipiet Wulandari
Ganesha Medicina Vol. 3 No. 1 (2023)
Publisher : Universitas Pendidikan Ganesha

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23887/gm.v3i1.55575

Abstract

ABSTRAK Kanker payudara merupakan suatu penyakit keganasan oleh karena proliferasi tak terkontrol dari sel-sel di payudara. Jumlah morbiditas dan mortalitas yang cukup tinggi menjadikan upaya skrining dan deteksi dini kanker payudara penting untuk dilakukan. Mamografi merupakan modalitas utama skrining kanker payudara yang diinterpretasikan oleh ahli radiologi berdasarkan persepsi visual. Namun, peningkatan permintaan skrining selaras dengan peningkatan beban kerja yang dapat mempengaruhi efektivitas dan menyebabkan kesalahan interpretasi hasil mamografi. Perkembangan teknologi, salah satunya kecerdasan buatan (AI) dengan algoritma deep learning diklaim memiliki kinerja yang lebih baik daripada kinerja rata-rata ahli radiologi. Tujuan penelitian ini adalah untuk mengkaji potensi AI dalam meningkatkan akurasi pembacaan hasil mamografi. Penelitian ini merupakan tinjauan sistematis dan meta-analisis menggunakan artikel dengan desain penelitian retrospektif dari lima basis data sesuai panduan Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Risiko bias dikaji menggunakan Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2). Total terdapat 12 artikel terinklusi yang dianalisis berdasarkan penggunaan tunggal AI, ahli radiologi, dan kombinasi ahli radiologi-AI. Hasil meta-analisis penggunaan tunggal AI menunjukkan hasil yang lebih tinggi dibandingkan lainnya pada sensitivitas (88% (95% CI 82%-92%)), spesifisitas (89% (95% CI 81%-93%)), dan AUC (0,94 (95% CI 0,92-0,96)). Penelitian ini menunjukkan adanya potensi yang menjanjikan dari kecerdasan buatan (AI) untuk meningkatkan akurasi pembacaan hasil mamografi. Kata Kunci: AI, deep learning, kanker payudara, mamografi ABSTRACT Breast cancer is a malignancy caused by the uncontrollable proliferation of breast cells. The high morbidity and mortality make an essential excuse for screening and early detection of breast cancer. Mammography is the main modality in the examination of breast cancer screening which is interpreted by radiologists based on visual perception. The increase in screening demand leads to workload which affects the effectiveness and misinterpretation of mammography results. These years, technological development such as artificial intelligence (AI) in its deep learning algorithm claimed to have better performance than the average performance of radiologists. Hence, this study aimed to investigate the potency of AI to enhance the accuracy of a mammography reading. This systematic review and meta-analysis conducted retrospective articles from five electronic databases based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The risk of biases was assessed from each study using Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2). Twelve articles were included and analyzed for the AI stand-alone, radiologists stand-alone, and combination of radiologists with AI. The current study showed the higher results of AI stand-alone compared to others in its sensitivity (88% (95% CI 82%-92%)), specificity (89% (95% CI 81%-93%)), and area under the curves (0,94 (95% CI 0,92-0,96)). In conclusion, this systematic review and meta-analysis provide valuable evidence about AI's promising potency to enhance mammography reading accuracy. Keywords: AI, breast cancer, deep learning, mammography