Claim Missing Document
Check
Articles

Found 2 Documents
Search

Fermion mass formulation in the Modified Left-Right Symmetry Model Nurul Embun Isnawati; Istikomah Istikomah; Muhammad Ardhi Khalif
Journal of Natural Sciences and Mathematics Research Vol 8, No 2 (2022): December
Publisher : Faculty of Science and Technology, Universitas Islam Negeri Walisongo Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21580/jnsmr.2022.8.2.13633

Abstract

The Modified Left Right Symmetry Model is an extension of the Standard Model. This model introduces left-handed neutrinos to the right sector and a doublet scalar field to the left sector. This model cannot yet explain the mass generation of fermions and neutrinos. This study is theoretical research using the literature review method. Generating the masses of fermions (quark up-down) and electrons through spontaneous symmetry breaking in Yukawa's Lagrangian term produces a particle mass in the left sector, the same as the calculations in the Standard Model. The masses of fermions (up-down quarks) and electrons for the right sector produced in this study are much more massive than those of fermions (up-down quarks) and the left sector. The neutrino masses produced in this study are by following the Seesaw Mechanism. That is, if one neutrino mass is massive, then the other neutrino masses will be light.©2022 JNSMR UIN Walisongo. All rights reserved.
Scalar fields as dark matter candidates in the modified left-right symmetry model Istikomah Istikomah; Nurul Embun Isnawati
Journal of Natural Sciences and Mathematics Research Vol 9, No 1 (2023): June
Publisher : Faculty of Science and Technology, Universitas Islam Negeri Walisongo Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21580/jnsmr.2023.9.1.17481

Abstract

Dark matter is about 25% of the universe, but its existence is still a mystery. The Modified Left-Right Symmetry Model with the extension of the scalar field, is expected to explain dark matter candidate. The dark matter candidates were analyzed using the Higgs Potential and Lagrangian Yukawa to obtain information on decay and scattering interactions. The generation of dark matter can be determined by analyzing the temperature evolution of the universe, which is divided into three stages post-inflation reheating, symmetry breaking first step, and symmetry breaking second step. The analysis results show that the right-sector scalar field  can be Cold Dark Matter (CDM) candidate because it has non-relativistic characteristics, is stable, does not interact with fermions, and has an abundance of 0.004. The right-sector atom can also be a CDM candidate because it has non-relativistic characteristics, is neutral, and consists of the right nucleons and right electrons. The singlet scalar field  can be the Warm Dark Matter (WDM) candidate because it can decay into fermion, interact in the left and right sectors, is neutrally charged and does not interact with other particles electromagnetically and has an abundance of 0.003. Thus, based on the modified left-right symmetry model, the particle that can be a candidate for dark matter is the scalar field.