Ayub Ginting
Telkom University

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Hybrid Hybrid wavelet and entropy features to monitor happy hypoxia based on photoplethysmogram signals Ayub Ginting
International Journal on Information and Communication Technology (IJoICT) Vol. 8 No. 2 (2022): December 2022
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21108/ijoict.v8i2.629

Abstract

Happy hypoxia is a condition where patients experience decreasing oxygen saturation in their brains. In worst cases, Happy hypoxia can reduce the patient's consciousness and even death. Covid-19 has increased cases of happy hypoxia. Several studies have been conducted to detect the happy hypoxia. Existing research projects generally use photo plethysmography signals. However, the results show that the accuracy of happy hypoxia detection is still low. This study provides a solution to the above problems, by proposing a happy hypoxia detection system based on entropy and Discrete Wavele Transform (DWT) features that are combined with a classifier based on K Nearest Neighbor (KNN). The method used in this research is as below Hybrid Wavelet and Entropy Features method.Experiments on the proposed system have been carried out using data on Covid-19 patients from Haji Adam Malik Hospital in Medan.The experimental results show that the system proposed has an accuracy of 87%, sensitivity of 90% and specificity of 85