Abstrak Penelitian ini membahas penanganan missing value serta perbandingan performa algoritma Naïve Bayes dan Decision Tree dalam memprediksi kelulusan mahasiswa. Dataset yang digunakan mencakup data akademik mahasiswa yang dimanipulasi untuk mensimulasikan missing value. Metode imputasi, seperti Mean Imputation, K-Nearest Neighbors, dan Iterative Imputation, diterapkan untuk menangani nilai yang hilang. Evaluasi dilakukan dengan menggunakan metrik akurasi, presisi, recall, dan F1-score. Hasil penelitian menunjukkan bahwa algoritma Decision Tree memiliki performa lebih unggul dibandingkan Naïve Bayes, dengan akurasi mencapai 92,1% dibandingkan 85,3% pada Naïve Bayes. Keunggulan ini menunjukkan bahwa Decision Tree lebih efektif dalam menangkap pola data dengan hubungan antar fitur yang kompleks. Studi ini memberikan kontribusi terhadap pengembangan metode prediksi berbasis data untuk mendukung kebijakan akademik, termasuk penanganan missing value yang optimal dan pemilihan algoritma yang tepat. Abstract This study examines the handling of missing values and compares the performance of the Naïve Bayes and Decision Tree algorithms in predicting student graduation. The dataset includes academic records that were manipulated to simulate missing values. Imputation methods such as Mean Imputation, K-Nearest Neighbors, and Iterative Imputation were applied to address missing data. The evaluation utilized metrics such as accuracy, precision, recall, and F1-score. The results indicate that the Decision Tree algorithm outperforms Naïve Bayes, achieving an accuracy of 92.1% compared to 85.3% for Naïve Bayes. This superiority highlights that Decision Tree is more effective in capturing data patterns with complex inter-feature relationships. This study contributes to the development of data-driven prediction methods to support academic policies, including optimal missing value handling and the selection of appropriate algorithms.