Mohd Farhan MD Fudzee, Mohd Farhan
Tun Hussein Onn University

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

Modified Alexnet Architecture for Classification of Cassava Based on Leaf Images Sholihin, Miftahus; Md Fudzee, Mohd Farhan; Ismail, Mohd Norasri; Wati, Efi Neo; Arshad, Mohamad Syafwan; Gusman, Taufik
JOIV : International Journal on Informatics Visualization Vol 8, No 3 (2024)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.8.3.2966

Abstract

The objective of this study is to address the drawbacks of conventional classification approaches through the implementation of deep learning, specifically a modified AlexNet. The primary aim of this study is to precisely categorize the four distinct varieties of cassava, namely Manggu, Gajah, Beracun, and Kapok. The cassava dataset was obtained from farmers in Lamongan, Indonesia, and was used as a source of information. Data collection on cassava leaves was carried out with agricultural research specialists. A total of 1,400 images are included in the dataset, with 350 images corresponding to each variety of cassava produced. The central focus of this research lies in a comprehensive evaluation of the modified AlexNet architecture's performance compared to the original AlexNet architecture for cassava classification. Multiple scenarios were examined, involving diverse combinations of learning rates and epochs, to thoroughly assess the robustness and adaptability of the proposed approach. Among the evaluation criteria that were rigorously examined were accuracy, recall, F1 score, and precision. These metrics were used to determine the predictive capabilities of the model as well as its potential utilization in the actual world. The results show that the modified AlexNet design has better performance than the original AlexNet for recall, accuracy, precision, and F-1 score, all achieving a rate of 87%. In situations where a learning rate of 0.0001 and an epoch count of 150 are utilized, the performance of the approach stands out significantly, displaying an excellent level of competency. Nevertheless, it is crucial to recognize that distinct fluctuations in performance were noted within particular contexts and with diverse learning rates.
Systematic Literature Review on Augmented Reality with Persuasive System Design: Application and Design in Education and Learning Nasirudin, Mohd Asrul; Md Fudzee, Mohd Farhan; Senan, Norhalina; Che Dalim, Che Samihah; Witarsyah, Deden; Erianda, Aldo
JOIV : International Journal on Informatics Visualization Vol 8, No 2 (2024)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.8.2.2702

Abstract

Augmented Reality (AR) is an innovative technology that has gained significant scholarly attention. It uses computer-generated sensory inputs like visuals, sounds, and touch to enhance how we perceive the real world, providing a transformative impact on human sensory experiences. Motivated by the possibilities of augmented reality (AR) in the realm of the educational learning environment, this research aims to document the evolving landscape of augmented reality (AR) applications in education and training, with a specific emphasis on the incorporation of persuasive system design (PSD) elements. The study also explores the diverse technologies and methodologies for developing these applications. A systematic literature review was conducted, analyzing 44 articles following the protocol for PRISMA assessments. Four research questions were formulated to investigate trends in AR applications. Between 2016 and 2023, publications on AR applications doubled, with a significant focus on the educational field. Marker-based AR methods dominated (68.49%), while markerless methods constituted 31.51%. Unity and Vuforia were the most used platforms, accounting for 77.27% of applications. Most research papers assessed application effectiveness subjectively through custom-made questionnaires. University students were identified as the primary target users of AR applications. Only a few applications integrated persuasive elements, even for adult users. This highlights the need for further studies to fully grasp the possibilities of combining persuasive system design with augmented reality applications in education
Feature Extraction and Classification On Single Nucleotide Polymorphism Kamarudin, Nur Fatihah; Ali Shah, Zuraini; Md Fudzee, Mohd Farhan; Kasim, Shahreen
International Journal of Advanced Science Computing and Engineering Vol. 1 No. 2 (2019)
Publisher : SOTVI

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (274.247 KB) | DOI: 10.62527/ijasce.1.2.6

Abstract

Malay in Peninsular Malaysia can be divided into eight sub-ethnics which are Malay Bugis, Malay, Malay Champa, Malay Jawa, Malay Kelantan, Malay Kedah, Malay Minang and Malay Pattani. Ancestry informative marker (AIM) can be used to represent the eight subethnic of Malay population in Peninsular Malaysia. In this research, single nucleotide polymorphism (SNP) datasets of eight sub-ethnics are analyses in order to obtain the AIM for Malays population in Peninsular Malaysia. However, the dataset may have outlier, missing data and redundancy that may impact the accuracy of the result. Pre-processing data is an important step that will remove the entire problem. Iterative pruning principal component analysis (ipPCA) is one of the techniques that usually use in analysis on genome datasets to extract the information. It can be applied on the high structured data and can improve the resolution of the data. It also used for structure a sub-population. Random Forest and Hidden Naïve Bayes is used to classify the SNP that can be used as AIM. Information Gain Ratio will rank the chosen AIM based on the value of each attribute
Systematic Literature Review on Persuasive System Design Framework for Managing Curriculum Performance Saifunnizam, Syamir Thaqif; Md Fudzee, Mohd Farhan; Hanif Jofri, Muhamad; Kasim, Shahreen; Arrova Dewi, Deshinta; Arshad, Mohamad Safwan; Yulherniwati, -
JOIV : International Journal on Informatics Visualization Vol 9, No 1 (2025)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.9.1.3663

Abstract

Integrating digital resources into educational assessment has led to the widespread adoption of e-portfolios as tools for documenting and evaluating student achievement, thereby transforming traditional evaluation methods. However, the existing frameworks primarily focus on assessing academic performance, often neglecting the comprehensive monitoring of student’s co-curricular activities. To overcome current gaps in comprehensive student evaluation, this study introduces a conceptual framework incorporating persuasive system design (PSD) into an e-portfolio to facilitate efficient co-curricular performance monitoring in Malaysian secondary schools. To ensure a thorough approach to educational evaluation, it is essential to effectively monitor and manage academic and extracurricular performance to understand student progress comprehensively. By adding Physical Activity, Sports, and Co-curriculum Assessment (PAJSK) – specific categories and key PSD elements- primary task support, dialogue support, system credibility support, and social support- that are all designed to improve user engagement and system dependability in an educational environment, the framework builds on the Oinas-Kukkonen and Harijumaa PSD Model. This study adapts and discusses the persuasive design elements to meet the goals of educational assessment frameworks by comparing PSD implementation in e-health, e-tourism, e-commerce, and e-learning. The results offer an overview of developing a practical, engaging e-portfolio framework that facilitates comprehensive student evaluation, especially in educational environments focusing on co-curricular achievement.