Ryan Christian
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

WEB-BASED CLUSTER OPTIMIZATION USING K-MEDOIDS AND DAVIES BOULDIN INDEX Ryan Christian; Deny Jollyta
JURTEKSI (Jurnal Teknologi dan Sistem Informasi) Vol 9, No 1 (2022): Desember 2022
Publisher : STMIK Royal

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33330/jurteksi.v9i1.1855

Abstract

Abstract: Clustering data has always been a fascinating subject to research numerous perspectives. A variety of knowledge is produced by the calculating process utilizing various algorithms. The genesis of cluster optimization is based on differences of opinion about the cluster's results. In general, cluster and optimization findings are generated using software such as Matlab, RapidMiner, and programming languages like Python. Users, however, have not been satisfied with the results so far. The various outcomes are the primary motivations for continuing to create and develop applications. The goal of this research is to create an application that can evaluate cluster data using the K-Medoids method, which can then be further optimized using the Davies Bouldin Index (DBI). Because the target application is students and lecturers who use it in learning and observers of the cluster field, the application can indeed be accessible through a browser to make it easier to use. For ease of using it, the program is available on both desktop and mobile platforms. Through separately created applications, it is intended that this research will give an alternative to clustering and optimization.            Keywords: application, cluster, dbi, k-medoids, optimization  Abstrak: Clusterisasi data selalu menjadi topik yang menarik untuk dikembangkan dari berbagai sisi. Proses perhitungannya yang menggunakan berbagai algoritma menghasilkan knowledge yang beragam. Perbedaan pendapat terhasil hasil cluster menjadi dasar munculnya optimalisasi cluster. Umumnya hasil cluster dan optimalisasi diperoleh dari pengolahan menggunakan aplikasi yakni Matlab, RapidMiner, dan bahasa pemrograman seperti Pyhton. Namun demikian hasil yang muncul belum mampu memuaskan pengguna. Hasil yang berbeda menjadi alasan utama pembuatan maupun pengembangan aplikasi masih terus dilakukan. Penelitian ini bertujuan untuk membangun sebuah aplikasi yang dapat memproses data cluster menggunakan algoritma K-Medoids untuk selanjutnya dioptimalisasi dengan Davies Bouldin Index (DBI). Untuk memudahkan penggunaan, aplikasi dapat diakses pada browser karena target aplikasi adalah mahasiswa dan dosen yang menggunakan pada pembelajaran serta pemerhati bidang cluster. Aplikasi dirancang pada platform desktop dan mobile demi memudahkan pengaksesan. Diharapkan, penelitian ini memberikan alternatif dalam proses clusterisasi dan optimalisasi melalui aplikasi yang dirancang mandiri. Kata kunci: aplikasi; cluster; dbi; k-medoids; optimalisasi
The Influence of Hedonic Motivation, Facilitating Conditions, and Behavioral Intention on the Use of Shopee Paylater Behavior Among Gen Z Moderated by Gender Ryan Christian; Siti Nurjanah
Proceedings of the International Conference on Entrepreneurship (IConEnt) Vol. 4 (2024): Proceedings of the 4th International Conference on Entrepreneurship (IConEnt)
Publisher : Universitas Pelita Harapan

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The digital era has significantly changed consumer shopping behavior, with digital financial technology emerging as the fastest growing digital service sector in Indonesia. One of the fastest growing services in this sector is paylater services, which allow payments to be postponed to be settled at a later date. This study investigates the factors that influence the adoption and usage behavior of one of the largest paylater services in Indonesia, Shopee Paylater, among Generation Z, using the Extended Unified Theory of Acceptance and Use of Technology (UTAUT) model as the basis for this study. This study identifies key factors such as hedonic motivation, facilitating conditions, behavioral intention, and use behavior, with gender as a moderating variable. The purpose of this study is to provide insight into Gen Z consumer behavior in adopting Shopee Paylater, as well as to help paylater service providers understand, adapt, and optimize their products for this demographic. The results of this study indicate that the hedonic motivation and facilitating conditions variables influence the behavioral intention to adopt Shopee Paylater services, and the facilitating conditions and behavioral intention variables influence the use behavior of Shopee Paylater users. The moderating variable in the form of gender asslso has an important role in determining the intention to adopt Shopee Paylater services.