Claim Missing Document
Check
Articles

Found 3 Documents
Search

A systematic decision-making approach to optimizing microgrid energy sources in rural areas through diesel generator operation and techno-economic analysis: A case study of Baron Technopark in Indonesia Prawitasari, Adinda; Nurliyanti, Vetri; Putri Utami, Dannya Maharani; Nurdiana, Eka; Akhmad, Kholid; Aji, Prasetyo; Syafei, Suhraeni; Ifanda, Ifanda; Mulyana, Iwa Garniwa
International Journal of Renewable Energy Development Vol 13, No 2 (2024): March 2024
Publisher : Center of Biomass & Renewable Energy (CBIORE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61435/ijred.2024.59560

Abstract

Microgrid systems are part of the most reliable energy supply technologies for rural communities that do not have access to electricity but the system is generally dominated by diesel generators (DG). The implementation of de-dieselization programs to ensure efficient diesel operations requires addressing several scenarios such as the replacement of diesel completely with 100% renewable energy sources at a significant cost. The design and selection of appropriate configuration, as well as operating patterns, need to be considered in adopting economical and reliable microgrid systems. Therefore, this study aimed to design an optimal configuration and operational pattern for microgrid systems for the frontier, outermost, and least developed (3T) regions using Baron Techno Park (BTP) in Indonesia as a case study. The optimization was conducted through HOMER software combined with benefit-cost analysis and the focus was on daily load variations, selection of control algorithms, reconfiguration of the power supply system, and setting of the diesel generator operating hours. The results showed that the optimum configuration was achieved using loads of resort, 24 kWp of PV, 288 kWh of BESS, load-following (LF) as dispatch controller, and 25 kVa of DG. Moreover, the proposed microgrid system produced 12% excess energy, 36% renewable fraction (RF), 13.25 tons reduction in CO2 emissions per year, $0.28 LCOE per kWh, $250,478 NPC, and a benefit-cost ratio (BCR) of 0.89. It also had a potential energy efficiency savings of 55.56% and a cost efficiency of 20.95% compared to existing system configurations. In conclusion, the study showed that the addition of DG to microgrid systems in 3T areas was more optimal than using only PV and batteries. An effective operating schedule for the DG was also necessary to improve RF and reduce expenses. Furthermore, other energy storage devices considered less expensive than batteries could be introduced to improve the economics of microgrid systems in the 3T region.
PENENTUAN LOKASI SENSOR TEMPERATUR PADA TANGKI BAHAN BAKU PILOT PLANT BIODIESEL KUALITAS TINGGI KAPASITAS 1 TON/HARI Adi Widiatmoko, Kristianto; Prismantoko, Adi; Milkiy Kuswa, Fairuz; Prawitasari, Adinda; Dewi Solikhah, Maharani; Kismanto, Agus
AME (Aplikasi Mekanika dan Energi): Jurnal Ilmiah Teknik Mesin Vol. 6 No. 1 (2020)
Publisher : Universitas Ibn Khaldun Bogor

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (254.02 KB) | DOI: 10.32832/ame.v6i1.2824

Abstract

Perkembangan Biodiesel di Indonesia didorong oleh beberapa faktor pendukung seperti pemanfaatan Biodiesel sebagai salah satu cara dalam mengatasi permasalahan tekanan impor BBM dan meningkatkan ketahanan energi. Implementasi penggunaan Biodiesel ini mengalami kendala yang salah satunya adalah kualitas mutu dari Biodiesel dan harga yang kurang bersaing dengan minyak solar. Oleh sebab itu diperlukan teknologi produksi Biodiesel kualitas tinggi dengan menggunakan teknologi tanpa katalis yang beroperasi pada suhu tinggi. Salah satu cara dalam menentukan titik lokasi sensor suhu adalah dengan memperhatikan persebaran panas pada tangki pilot plant Biodiesel. Proses dalam menentukan lokasi sensor termperatur pada tangki ini dimulai dengan pembuatan model pada perangkat lunak Energi2D. Kemudian menambah titik-titik lokasi yang mungkin akan dipasang sensor temperatur merata pada bagian tangki. Perambatan panas dimulai dari titik elemen pemanas. Pada mulanya elemen pemanas akan memanaskan lingkungan sekitar pemanas terlebih dahulu dan kemudian menyebar kearah atas. Dari ke enam lokasi sensor suhu ini, lokasi sensor 5 dan sensor 6 cocok dipasang sensor suhu untuk tangki penyimpanan bahan baku yang mempunyai fluida yang berganti. Jadi apabila dalam tangki tersebut terdapat aliran pemasukan dan pengeluaran fluida yang tetap, maka lokasi sensor 5 dan sensor 6 yang paling cocok. Berbeda apabila fluida didalam tangki tidak berganti, maka lokasi sensor nomor 1 dan nomor 2 menjadi yang cocok. Karena jika suhu pada lokasi ini telah sesuai, maka dapat dipastikan suhu pada lokasi lainnya telah sesuai.
Optimized Configuration and Operation Of Isolated Microgrid Systems For Rural Electrification: Baron Technopark Prawitasari, Adinda
Poltanesa Vol 25 No 2 (2024): December 2024
Publisher : P3KM Politeknik Pertanian Negeri Samarinda

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.51967/tanesa.v25i2.3192

Abstract

Microgrid systems represent a significant advancement in energy supply technologies, particularly for rural communities lacking access to electricity; however, these systems are predominantly reliant on diesel generators (DG). The formulation and selection of suitable configurations, alongside operational patterns, must be meticulously evaluated in the pursuit of economically viable and dependable microgrid systems. Consequently, this research sought to devise an optimal configuration and operational for microgrid systems situated in isolation, utilizing the Baron Techno Park (BTP) in Indonesia as a case study. The optimization process was executed utilizing HOMER software, integrated with an operating cost comparison, with particular emphasis placed on daily load fluctuations, the selection of control algorithms, the reconfiguration of the power supply system, and the regulation of diesel generator operational hours. The proposed microgrid system yielded a surplus energy production of 16.7%, a renewable fraction (RF) of 100%, a levelized cost of electricity (LCOE) of $5.6 per kWh, a net present cost (NPC) of $3,97M. In summary, the study shows that by slightly increasing the capital cost of PV system procurement, it can reduce the operating cost of $629 from the base system in the long term.