Sri Utami
Universitas Islam Negeri Maulana Malik Ibrahim Malang

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Ruang l^p pada Norm-2 Lengkap Sri Utami; Hairur Rahman; Dewi Ismiarti
Jurnal Riset Mahasiswa Matematika Vol 1, No 4 (2022): Jurnal Riset Mahasiswa Matematika
Publisher : Mathematics Department, Maulana Malik Ibrahim State Islamic University of Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (353.579 KB) | DOI: 10.18860/jrmm.v1i4.14464

Abstract

The space l^p with 1≤p∞ is the set of real numbers that satisfy _(n=1)^∞▒〖|x_n |^p∞〗.The function in the vector space X which has real value which fulfills the norm-2 properties is denoted by ,⋅‖ and the pair (X,‖⋅,⋅‖) is called the norm-2 space.A norm-2 space is said to be complete or called a Banach-2 space if every Cauchy sequence in the space converges to an element in that space.This research was conducted to prove the l^p space in the complete norm-2.The first step to prove the completeness is to prove that the norm contained in l^p with 1≤p∞ satisfies the properties of norm-2.Next, prove that the norm derived from norm-2 is equivalent to the norm in l^p.Next shows that every Cauchy sequence in space l^p converges to an element in space l^p.Based on this proof, it is found that (l^p,‖⋅,⋅‖) is a complete norm-2 space.