Ravi Shanker Pandey
Birla Institute of Technology

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Imbalanced dataset classification using fuzzy ARTMAP and computational intelligence techniques Anita Kushwaha; Ravi Shanker Pandey
Indonesian Journal of Electrical Engineering and Computer Science Vol 30, No 2: May 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v30.i2.pp909-916

Abstract

Recently, fuzzy adaptive resonance theory mapping (ARTMAP) neural networks are applied to solving complex problems due to their plasticity-stability capability and resonance property. An imbalanced dataset occurs when there is the presence of one class containing a greater number of instances than other classes. It is skewed representation of data. Many standard algorithms have failed in mitigating imbalanced dataset problems. There are four paradigms used-data level, algorithm level, cost-sensitive, and ensemble method in solving imbalanced dataset problems. Here we put forward a method to solve the imbalanced dataset problem by a brain-neuron framework and an ensemble of a special type of artificial neural network (ANN) called fuzzy ARTMAP thereafter we applied a clustering algorithm known as fuzzy C-means clustering to handle missing value and also propose to make fuzzy ARTMAP cost-sensitive. Results indicate 100% accuracy in classification.