Kristopher Ray Simbulan Pamintuan
School of Chemical, Biological. and Materials Engineering and Sciences, Mapua University, Manila Center for Renewable Bioenergy Research, Mapua University, Manila

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

Design and Testing of 3D-Printed Stackable Plant-Microbial Fuel Cells for Field Applications Glenn Paula P Constantino; Justine Mae C. Dolot; Kristopher Ray Simbulan Pamintuan
International Journal of Renewable Energy Development Vol 12, No 2 (2023): March 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.44872

Abstract

The prevalence of non-renewable energy has always been a problem for the environment that needs a long-term solution. Plant-Microbial Fuel Cells (PMFCs) are promising bioelectrochemical systems that can utilize plant rhizodeposition to generate clean electricity on-site, without harming the plants, paving the way for simultaneous agriculture and power generation. However, one of the biggest hurdles in large-scale PMFC application is the diffused nature of power generation without a clear path to consolidate or amplify the small power of individual cells. In this study, stacking configurations of 3D-printed PMFCs are investigated to determine the amplification potential of bioelectricity. The PMFCs designed in this study are made of 3D-printed electrodes, printed from 1.75 mm Proto-pasta (ProtoPlant, USA) conductive PLA filament, and a terracotta membrane acting as the separator. Six cells were constructed with the electrodes designed to tightly fit with the ceramic separator when assembled. An agriculturally important plant (S. Melongena) was utilized as the model plant for testing purposes. Stacking of cells in series had resulted in severe voltage loss while stacking of cells in parallel preserved the voltage and current of the cells. Cumulative stacking verified the increasing voltage losses as more cells are connected in series, while voltage and current were generally supported well as more cells were connected in parallel. Combination stacks were also investigated, but while 2 sets of 3 cells in parallel stacked in series generated proportionately larger power and power density compared to individual cells, the drop in current density suggests that pure parallel stacks are still more attractive for scaling up, at least for the proposed stake design in this study. The results of this study indicated that the scale up of PMFC technology is possible in field applications to continuously generate electricity while growing edible plants.
Characterization of plant growth promoting potential of 3D-printed plant microbial fuel cells Diane Pamela Entienza Palmero; Kristopher Ray Simbulan Pamintuan
International Journal of Renewable Energy Development Vol 12, No 5 (2023): September 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.52291

Abstract

Plant-Microbial Fuel Cell (PMFC) is an emerging technology that converts plant waste into electrical energy through rhizodeposition, offering a renewable and sustainable source of energy. Deviating from the traditional PMFC configurations, additive manufacturing was utilized to create intricate and efficient designs using polymer-carbon composites. Concerning the agricultural sector, the effect of 3D-printed PMFCs on the growth and biomass distribution of Phaseolus lunatus and Ipomoea aquatica was determined. The experiment showed that electrostimulation promoted the average daily leaf number and plant height of both polarized plants, which were statistically proven to be greater than the control (α = 0.05), by energizing the flow of ions in the soil, boosting nutrient uptake and metabolism. It also stimulated the growth of roots, increasing the root dry mass of polarized plants by 155.44% and 66.30% for I. aquatica and P. Lunatus against their non-polarized counterpart. Due to the biofilm formation on the anode surface, the number of root nodules of the polarized P. lunatus was 51.30% higher than the control, while the protein content in the PMFC setup was 42.22% and 8.26% higher than the control for I. aquatica and P. lunatus, respectively. The voltage readings resemble the plants' average growth rate, and the polarization studies showed that the optimum external resistances in the I. aquatica- and P. lunatus-powered PMFC were 4.7 kΩ and 10 kΩ, respectively. Due to other prevailing pathways of organic carbon consumption, such as methanogenesis, the effect of polarization on the organic carbon content in soil is currently inconclusive and requires further study.
Design and Testing of 3D-Printed Stackable Plant-Microbial Fuel Cells for Field Applications Glenn Paula P Constantino; Justine Mae C. Dolot; Kristopher Ray Simbulan Pamintuan
International Journal of Renewable Energy Development Vol 12, No 2 (2023): March 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.44872

Abstract

The prevalence of non-renewable energy has always been a problem for the environment that needs a long-term solution. Plant-Microbial Fuel Cells (PMFCs) are promising bioelectrochemical systems that can utilize plant rhizodeposition to generate clean electricity on-site, without harming the plants, paving the way for simultaneous agriculture and power generation. However, one of the biggest hurdles in large-scale PMFC application is the diffused nature of power generation without a clear path to consolidate or amplify the small power of individual cells. In this study, stacking configurations of 3D-printed PMFCs are investigated to determine the amplification potential of bioelectricity. The PMFCs designed in this study are made of 3D-printed electrodes, printed from 1.75 mm Proto-pasta (ProtoPlant, USA) conductive PLA filament, and a terracotta membrane acting as the separator. Six cells were constructed with the electrodes designed to tightly fit with the ceramic separator when assembled. An agriculturally important plant (S. Melongena) was utilized as the model plant for testing purposes. Stacking of cells in series had resulted in severe voltage loss while stacking of cells in parallel preserved the voltage and current of the cells. Cumulative stacking verified the increasing voltage losses as more cells are connected in series, while voltage and current were generally supported well as more cells were connected in parallel. Combination stacks were also investigated, but while 2 sets of 3 cells in parallel stacked in series generated proportionately larger power and power density compared to individual cells, the drop in current density suggests that pure parallel stacks are still more attractive for scaling up, at least for the proposed stake design in this study. The results of this study indicated that the scale up of PMFC technology is possible in field applications to continuously generate electricity while growing edible plants.
Characterization of plant growth promoting potential of 3D-printed plant microbial fuel cells Diane Pamela Entienza Palmero; Kristopher Ray Simbulan Pamintuan
International Journal of Renewable Energy Development Vol 12, No 5 (2023): September 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.52291

Abstract

Plant-Microbial Fuel Cell (PMFC) is an emerging technology that converts plant waste into electrical energy through rhizodeposition, offering a renewable and sustainable source of energy. Deviating from the traditional PMFC configurations, additive manufacturing was utilized to create intricate and efficient designs using polymer-carbon composites. Concerning the agricultural sector, the effect of 3D-printed PMFCs on the growth and biomass distribution of Phaseolus lunatus and Ipomoea aquatica was determined. The experiment showed that electrostimulation promoted the average daily leaf number and plant height of both polarized plants, which were statistically proven to be greater than the control (α = 0.05), by energizing the flow of ions in the soil, boosting nutrient uptake and metabolism. It also stimulated the growth of roots, increasing the root dry mass of polarized plants by 155.44% and 66.30% for I. aquatica and P. Lunatus against their non-polarized counterpart. Due to the biofilm formation on the anode surface, the number of root nodules of the polarized P. lunatus was 51.30% higher than the control, while the protein content in the PMFC setup was 42.22% and 8.26% higher than the control for I. aquatica and P. lunatus, respectively. The voltage readings resemble the plants' average growth rate, and the polarization studies showed that the optimum external resistances in the I. aquatica- and P. lunatus-powered PMFC were 4.7 kΩ and 10 kΩ, respectively. Due to other prevailing pathways of organic carbon consumption, such as methanogenesis, the effect of polarization on the organic carbon content in soil is currently inconclusive and requires further study.