Azmani Abdallah
University Abdelmalek Essaadi

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Online panel data quality: a sentiment analysis based on a deep learning approach Youb Ibtissam; Azmani Abdallah; Hamlich Mohamed
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 12, No 3: September 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v12.i3.pp1468-1475

Abstract

The rise of online access panels has profoundly changed the market research landscape. Often presented by their owners as very powerful tools, they nevertheless raise important scientific questions, particularly regarding the representativeness of the samples they produce and, consequently, the validity of the information they provide. In this paper, we present an innovative approach, based on deep learning and sentiment analysis techniques, to assess in real time the representativeness of an online panel sample. The idea is to measure the extent to which the opinions of an online panel converge with opinions on social networks. To validate the proposed method, we conducted a case study on the emerging discussion on coronavirus disease (COVID-19) vaccination. The results not only proved the representativeness of online panel sample, but also demonstrated the feasibility and effectiveness of our approach.