Claim Missing Document
Check
Articles

Found 5 Documents
Search

STABILITY ANALYSIS AND PERFORMANCE OF KALMAN FILTERING AND ROBUST KALMAN FILTERING ON UNCERTAIN CONTINUOUS-TIME SYSTEMS Rudianto, Budi; Muhafzan, Muhafzan; Syafwan, Mahdhivan; Sy, Syafrizal
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 19 No 2 (2025): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol19iss2pp1295-1306

Abstract

This paper discusses the stability analysis of robust Kalman filtering on uncertain continuous-time systems. In real applications, systems often face model uncertainty and noise affecting prediction and estimation accuracy. Therefore, a filtering method is needed to overcome these uncertainties. Robust Kalman filtering is one of the most effective methods for dealing with model uncertainty. In this paper, we discuss the application of this method to continuous-time systems and its stability analysis. Simulation results show that robust Kalman filtering can provide more accurate and stable estimates than the conventional Kalman filter. Robust Kalman filtering can reduce the estimation error to about 30% under uncertain model conditions and maintain stability despite disturbances of up to 20% of the system parameters. However, this research has limitations regarding testing scenarios with more complex uncertainty models and higher disturbance variability. The originality of this research lies in its focus on the stability analysis of robust Kalman filtering on uncertain continuous-time systems, which has rarely been discussed in depth in previous literature.
Bilangan Kromatik Lokasi Graf Tentakel Putri, Azizah Riana; Sy, Syafrizal; Helmi, Monika Rianti
Limits: Journal of Mathematics and Its Applications Vol. 22 No. 2 (2025): Limits: Journal of Mathematics and Its Applications Volume 22 Nomor 2 Edisi Ju
Publisher : Pusat Publikasi Ilmiah LPPM Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/limits.v22i2.3462

Abstract

The locating-chromatic number of a graph was introduced by Chartrand et al. in 2002, which is a combined concept between the vertex coloring and partition dimension of a graph. The locating-chromatic number of a graph is a grouping of vertices on a graph based on color, which is called a color class, provided that each vertex on the graph has a different color code. Determining the locating-chromatic number of a graph is done by constructing the lower and upper bound of the locating-chromatic number of the graph. In this paper, we determine the locating-chromatic number of the tentacle graph, which is denoted by T_(k,m,n). Tentacle Graph is a graph constructed from a triangular book graph Bt_n whose common edge is amalgamated with C_k. Then two vertices in C_k that are adjacent to the vertex associated with the terminal edge are amalgamated with the star graphs S_(n_1) and S_(n_2). By determining the lower and upper bounds of the location chromatic number, it is obtained that the location chromatic number of Tentacle Graph is 4, m=1,n=2, n+1, for m>=1, n>= m + 2, and m + 2, for m > 1, n < m + 2.
SOFT GRAPHS OF THE BARBELL STAR GRAPH Helmi, Monika Rianti; Sy, Syafrizal; Nazra, Admi; Muhafzan; Hanifa, Nurul; Alfiany, Noverina
Jurnal Matematika UNAND Vol. 14 No. 4 (2025)
Publisher : Departemen Matematika dan Sains Data FMIPA Universitas Andalas Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jmua.14.4.366-375.2025

Abstract

\textit{Let $G^*=(V(G^*),E(G^*))$ is a simple graph and $A$ be a non-empty set of parameter. Let $R\subseteq A\times V(G^*)$ be a arbitrary relation from $A$ to $V(G^*)$. A mapping $F:A\to P(V(G^*))$ can be defined as $F(x)=\left\{y\in V\mid xRy \right\}$ and a mapping $K:A\to P(E(G^*))$ can be defined as $K(x)=\left\{uv\in E\mid \left\{u,v\right\}\subseteq F(x)\right\}$. A pair $(F,A)$ and $(K,A)$ are soft sets over $V(G^*)$ and $E(G^*)$ respectively, then $(F(a),K(a))$ is a subgraph of $G^*$. The 4-tuple $G=(G^*,F,K,A)$ is called a soft graph of $G$. In this paper, we enumerate soft graph of amalgamation of path and star.}
BILANGAN RAMSEY MULTIPARTIT HIMPUNAN (R-M-H) M_j(C_n, C_s) UNTUK CYCLE Majid, Abdul -; SY, SYAFRIZAL; NAZRA, ADMI
Jurnal Matematika UNAND Vol. 12 No. 4 (2023)
Publisher : Departemen Matematika dan Sains Data FMIPA Universitas Andalas Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jmua.12.4.309-317.2023

Abstract

Diberikan dua graf G dan H sembarang. Bilangan Ramsey multipartit himpunan (R-M-H) M_j(G, H) dengan bilangan asli j ≥ 2, adalah bilangan bulat positif terkecil t sedemikian sehingga jika semua sisi dari graf multipartit seimbang lengkap K_{t×j} diberi sebarang 2−pewarnaan merah-biru, maka graf K_{t×j} senantiasa memuat G berwarna merah sebagai subgraf atau H berwarna biru sebagai subgraf. Graf C_n adalah suatu graf cycle dengan n ≥ 3 titik. Pada artikel ini, Penulis akan menentukan bilangan R-M-H M_j(C_n, C_s) untuk sebarang bilangan asli n ≥ 3 ganjil dan s ≥ 3. Hasil dari penelitian ini adalah ditemukannya bilangan R-M-H Mj (C_n, C_s) untuk cycle.
BILANGAN R-M-H UNTUK GRAF LINTASAN P_4 DAN GRAF RODA W_n DENGAN n>=3 Multasya, Nadya Citra; SYAFWAN, MAHDHIVAN; SY, SYAFRIZAL
Jurnal Matematika UNAND Vol. 12 No. 2 (2023)
Publisher : Departemen Matematika dan Sains Data FMIPA Universitas Andalas Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jmua.12.2.135-143.2023

Abstract

Diberikan dua graf G dan H serta bilangan asli j>=2. Bilangan Ramsey multipartit himpunan (R-M-H) M_j(G,H) adalah suatu bilangan bulat positif terkecil t sedemikian sehingga untuk sebarang faktorisasi K_(txj) = F_1 + F_2 senantiasa F_1 memuat subgraf G atau F_2 memuat subgraf H. Pada artikel ini akan ditentukan M_3(P_4,W_n) dimana P_4 adalah suatu graf lintasan yang terdiri dari 4 simpul dan W_n adalah suatu graf roda yang terdiri dari n+1 simpul dengan n>=3.