Siti Rahayu Selamat
Universiti Teknikal Malaysia Melaka, Melaka, Malaysia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Impact of Data Balancing and Feature Selection on Machine Learning-based Network Intrusion Detection Azhari Shouni Barkah; Siti Rahayu Selamat; Zaheera Zainal Abidin; Rizki Wahyudi
JOIV : International Journal on Informatics Visualization Vol 7, No 1 (2023)
Publisher : Politeknik Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.7.1.1041

Abstract

Unbalanced datasets are a common problem in supervised machine learning. It leads to a deeper understanding of the majority of classes in machine learning. Therefore, the machine learning model is more effective at recognizing the majority classes than the minority classes. Naturally, imbalanced data, such as disease data and data networking, has emerged in real life. DDOS is one of the network intrusions found to happen more often than R2L. There is an imbalance in the composition of network attacks in Intrusion Detection System (IDS) public datasets such as NSL-KDD and UNSW-NB15. Besides, researchers propose many techniques to transform it into balanced data by duplicating the minority class and producing synthetic data. Synthetic Minority Oversampling Technique (SMOTE) and Adaptive Synthetic (ADASYN) algorithms duplicate the data and construct synthetic data for the minority classes. Meanwhile, machine learning algorithms can capture the labeled data's pattern by considering the input features. Unfortunately, not all the input features have an equal impact on the output (predicted class or value). Some features are interrelated and misleading. Therefore, the important features should be selected to produce a good model. In this research, we implement the recursive feature elimination (RFE) technique to select important features from the available dataset. According to the experiment, SMOTE provides a better synthetic dataset than ADASYN for the UNSW-B15 dataset with a high level of imbalance. RFE feature selection slightly reduces the model's accuracy but improves the training speed. Then, the Decision Tree classifier consistently achieves a better recognition rate than Random Forest and KNN.
An Overview Diversity Framework for Internet of Things (IoT) Forensic Investigation Randi Rizal; Siti Rahayu Selamat; Mohd. Zaki Mas’ud
JOIV : International Journal on Informatics Visualization Vol 7, No 2 (2023)
Publisher : Politeknik Negeri Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.7.2.1520

Abstract

The increasing utilization of IoT technology in various fields creates opportunities and risks for investigating all cybercrimes. At the same time, many research studies have concentrated on security and forensic investigations to collect digital evidence on IoT devices. However, until now, the IoT platform has not fully evolved to adjust the tools, methods, and procedures of IoT forensic investigations. The main reasons for investigators are the characteristics and infrastructure of IoT devices. For example, device number variations, heterogeneity, distribution of protocols used, data duplication, complexity, limited memory, etc. As a result, resulting is a tough challenge to identify, collect, examine, analyze, and present potential IoT digital evidence for forensic investigative processes effectively and efficiently. Indeed, there is not fully used and adapted international standard for the perfect IoT forensic investigation framework. In the research method, a literature review has been carried out by producing previous research studies that have contributed to further facing challenges. To keep the quality of the literature review, research questions (RQ) were conducted for all studies related to the IoT forensic investigation framework between 2015-2022. This research results highlight and provides a comprehensive overview of the twenty current IoT forensic investigation framework that has been proposed. Then, a summary or contribution is presented focusing on the latest research, grouping the forensic phases, and evaluating essential frameworks in the IoT forensic investigation process to obtain digital evidence. Finally, open research issues are presented for further research in developing IoT forensic investigative framework.