Sama Salam Samaan
University of Technology

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Feature-based real-time distributed denial of service detection in SDN using machine learning and Spark Sama Salam Samaan; Hassan Awheed Jeiad
Bulletin of Electrical Engineering and Informatics Vol 12, No 4: August 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v12i4.4711

Abstract

Recently, software defined networking (SDN) has been deployed extensively in diverse practical domains, providing a new direction in network management by separating the control plane from the data plane. Nevertheless, SDN is vulnerable to distributed denial of service (DDoS) attacks resulting from its centralized controller. Several studies have been suggested to address the DDoS attacks in SDN utilizing machine learning approaches. However, these approaches are resource-intensive and cause performance degradation since they cannot perform effectively in large-scale SDN networks that generate vast traffic statistics. To handle all these challenges, we build a DDoS attack detection model in SDN using Spark as a big data tool to overcome the limitations of conventional data processing methods. Four machine learning algorithms are employed. The decision tree (DT) is elected to be used for real-time deployment based on the performance results, which indicates that it has the best accuracy of 0.936. The model performance is compared with state-of-the-art and shows an overall better performance.
Architecting a machine learning pipeline for online traffic classification in software defined networking using spark Sama Salam Samaan; Hassan Awheed Jeiad
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 12, No 2: June 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v12.i2.pp861-873

Abstract

Precise traffic classification is essential to numerous network functionalities such as routing, network management, and resource allocation. Traditional classification techniques became insufficient due to the massive growth of network traffic that requires high computational costs. The arising model of software defined networking (SDN) has adjusted the network architecture to get a centralized controller that preserves a global view over the entire network. This paper proposes a model for SDN traffic classification based on machine learning (ML) using the Spark framework. The proposed model consists of two phases; learning and deployment. A ML pipeline is constructed in the learning phase, consisting of a set of stages combined as a single entity. Three ML models are built and evaluated; decision tree, random forest, and logistic regression, for classifying a well-known 75 applications, including Google and YouTube, accurately and in a short time scale. A dataset consisting of 3,577,296 flows with 87 features is used for training and testing the models. The decision tree model is elected for deployment according to the performance results, which indicate that it has the best accuracy with 0.98. The performance of the proposed model is compared with the state-of-the-art works, and better accuracy result is reported.