This Author published in this journals
All Journal Jurnal Informatika
Sita Alden
Universitas Singaperbangsa Karawang

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Implementasi Algoritma CNN Untuk Pemilahan Jenis Sampah Berbasis Android Dengan Metode CRISP-DM Sita Alden; Betha Nurina Sari
Jurnal Informatika Vol 10, No 1 (2023): April 2023
Publisher : LPPM Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31294/inf.v10i1.14985

Abstract

Implementasi algoritma Convolutional Neural Network (CNN) untuk memilah jenis sampah berbasis Android dapat membantu masyarakat dalam memilah sampah dengan benar. Aplikasi ini akan menerima masukan berupa foto sampah yang diambil oleh pengguna dan kemudian menggunakan algoritma CNN untuk mengklasifikasikan jenis sampah. Hasil dari klasifikasi kemudian ditampilkan kepada pengguna sehingga dapat mengetahui jenis sampah dengan akurasi yang tepat untuk dibuang ke tempat sampah sesuai jenisnya. Pada pengujian pemilahan sampah organik dan anorganik berhasil dilakukan dengan menggunakan metode Transfer Learning CNN  dengan menerapkan arsitektur Mobile Net. Dataset  sampah yang terkumpul adalah sebanyak 5.428 di train di ML Kit. Precision 97,95% dan recall sebesar 95,18%. Pada pengujian menggunakan Android dengan library tensorflow Lite kulit pisang dapat terdeteksi menghasilkan output  sampah organik dengan akurasi sebesar 96%. Begitupun dengan sampah kardus dapat terdeteksi menghasilkan output  sampah anorganik dengan akurasi sebesar 99%.Implementation of a Convolutional Neural Network (CNN) algorithm for Android-based garbage sorting to help the public sort garbage correctly. The application will accept input in the form of user-taken garbage photos and use the CNN algorithm to classify the type of garbage. The classification results are then shown to the user to help identify the correct type of garbage to dispose of. Testing of organik and inorganik garbage sorting was successfully done using the Transfer Learning CNN method with the Mobile Net architecture. Collected garbage dataset is 5,428 in train in ML Kit, precision is 97.95% and recall is 95.18%. In testing using Android with the tensorflow Lite library, banana peels can be detected with 96% accuracy and cardboard can be detected with 99% accuracy.