Shili Hechmi
Department of Computer Sciences, University of Tabuk

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

An Accurate Real-Time Method for Face Mask Detection using CNN and SVM Shili Hechmi
Knowledge Engineering and Data Science Vol 5, No 2 (2022)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um018v5i22022p129-136

Abstract

Infectious respiratory diseases, including COVID-19, pose a significant challenge to humanity and a potential threat to life due to their severity and rapid spread. Using a surgical mask is among the most significant safety precautions that can help keep this sort of pandemic from spreading, and manual monitoring of large crowds in public places for face masks is problematic. In this research, we suggest a real-time approach for face mask detection. First, we use a multi-scale deep neural network to extract features. As a result, the attributes are better suited for training the detection system. We employ SVM post-processing in the classification stage to make the face mask detection method more robust. According to the experimental findings, our strategy considerably decreased the percentage of false positives and undetected cases.