This Author published in this journals
All Journal ILKOM Jurnal Ilmiah
Elsi Titasari Br Bangun
Universitas Gadjah Mada

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

CNN Ensemble Learning Method for Transfer learning: A Review Yudha Islami Sulistya; Elsi Titasari Br Bangun; Dyah Aruming Tyas
ILKOM Jurnal Ilmiah Vol 15, No 1 (2023)
Publisher : Prodi Teknik Informatika FIK Universitas Muslim Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33096/ilkom.v15i1.1541.45-63

Abstract

ThisĀ  study provides a review of CNN's ensemble learning method for transfer learning by highlighting sections such as review studies, datasets, pre-trained models, transfer learning, ensemble learning, and performance. The results indicate that the trend of ensemble learning, transfer learning ensemble, and transfer learning is growing every year. In 2022, there will be 35 papers reviewed related to this topic in this study. Some datasets contain apparent information starting from the dataset name, total data points, dataset splitting, target dataset availability, and type classification. ResNet-50, VGG-16, InceptionV3, and VGG-19 are used in most papers as pre-trained models and transfer learning processes. 50 (90.1%) papers use ensemble learning, and 5 (9.1%) do without ensemble learning. The reviewed paper summarizes several performance measurements, including accuracy, precision, recall, f1-score, sensitivity, specificity, training accuracy, validation accuracy, test accuracy, training losses, validation losses, test losses, training time, and AUC, DSC. In the last section, 49 papers produce the best model performance using the proposed model, and 6 other papers use DenseNet, DeQueezeNet, Extended Yager Model, InceptionV3, and ResNet-152.