Risma Yulina Wulandari
Institut Teknologi Bandung

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Distance antimagic labelings of product graphs Risma Yulina Wulandari; Rinovia Simanjuntak
Electronic Journal of Graph Theory and Applications (EJGTA) Vol 11, No 1 (2023): Electronic Journal of Graph Theory and Applications
Publisher : GTA Research Group, Univ. Newcastle, Indonesian Combinatorics Society and ITB

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/ejgta.2023.11.1.9

Abstract

A graph G is distance antimagic if there is a bijection f : V(G)→{1, 2, …, |V(G)|} such that for every pair of distinct vertices x and y applies w(x)≠w(y), where w(x)=Σ z ∈ N(x)f(z) and N(x) is the neighbourhood of x, i.e., the set of all vertices adjacent to x. It was conjectured that a graph is distance antimagic if and only if each vertex in the graph has a distinct neighbourhood. In this paper, we study the truth of the conjecture by posing sufficient conditions and constructing distance antimagic product graphs; the products under consideration are join, corona, and Cartesian.