This Author published in this journals
All Journal Jupiter
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Analisis Sentimen di Twitter Menggunakan Algoritma Artificial Neural Network Novi Yusliani; Armenia Yuhafiz; Mastura Diana Marieska; Alvi Syahrini Utami
JUPITER (Jurnal Penelitian Ilmu dan Teknologi Komputer) Vol 15 No 1d (2023): Jupiter Edisi April 2023
Publisher : Teknik Komputer Politeknik Negeri Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5281./6603/15.jupiter.2023.04

Abstract

Along with the development of social media, the amount of data in the form of opinions is increasing. The opinions in social media can be used to find out the assessments of social media users regarding something, one of which is the assessment of a candidate in politics. In general, the opinions in social media can be classified into two categories, namely positive and negative. Sentiment analysis is one of the research topics in the field of Natural Language Processing which aims to classify opinions into one of these categories. The opinions in social media that are often used as research objects are the opinions of Twitter users. This study uses an Artificial Neural Network (ANN) algorithm to be implemented in sentiment analysis system. The dataset used in this study is 1088 tweets consisting of 700 tweets labeled positive and 388 tweets labeled negative. The test results show that the best performance is produced when the data is divided into 80% for training and 20% for testing. The resulting percentages for each performance parameter used are accuracy is 61.3%, recall is 67.9%, precision is 75.1%, and f1-score is 71.3% using 0.01 for learning rate and 150 for epoch.