Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : IPTEK The Journal of Engineering

Sulphate Resistance of Geopolymer Concrete Based on High Calcium Fly Ash Yuyun Tajunnisa; Nur Achmad Husin; Indra Komara; Mochammad Ahdian Wildan Nafi; Mitsuhiro Shigeishi
IPTEK The Journal of Engineering Vol 9, No 1 (2023)
Publisher : Lembaga Penelitian dan Pengabdian kepada Masyarakat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j23378557.v9i1.a16235

Abstract

The inclusion of fly ash class C, which is widely available locally, can influence the progress of strength and durability qualities of geopolymer concrete when exposed to significant environmental conditions. Alternative geopolymer combinations appropriate for curing at ambient temperatures were employed to investigate the impacts of fly ash class C based geopolymer concrete. To react with fly ash class C, a combination of sodium hydroxide and sodium silicate alkaline activator was used. Fly ash class C was added as 20% of the total binder without using ordinary Portland cement. The durability of fly ash class C based geopolymer concrete in sulphate environments was tested. The changes in weight, length and compressive strength due to exposure in magnesium sulphate solution for different periods of time were determined. The test results demonstrate that fly ash class C based geopolymer concrete cured at normal temperatures has good resistance to sulphate attack. In general, inclusion of fly ash class C in geopolymer concrete improved strength and performed satisfactorily in sulphate environments when cured in ambient temperature.
Environmental Effects of Sulphate on Conventional Concrete Based on Portland Composite Cement Yuyun Tajunnisa; Nur Achmad Husin; Sigit Darmawan; M. Faishal Darmawan; Suwandi Suwandi; Mitsuhiro Shigeishi
IPTEK The Journal of Engineering Vol 9, No 1 (2023)
Publisher : Lembaga Penelitian dan Pengabdian kepada Masyarakat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j23378557.v9i1.a16230

Abstract

Concrete performances have weaknesses; one of those weaknesses is that it is significantly affected when put in a high sulfate and chloride environment. This study aims to investigate sulfate's effect on PCC concrete's performance. In this research, PCC concrete was immersed in water for 28 days and conducted after the casting. After being soaked in water, three immersed specimens were removed and immersed in magnesium sulfate solution for 24 days and 84 days, whereas three others were removed and immersed in natrium sulfate solution for 24 days and 84 days. The observation showed that PCC concrete's average compressive strength test with water immersion was 42.17 Mpa. It meets the SNI 2847:2019 Indonesian standard for sulfate classification S1. The specimens decreased to 30.74 Mpa after being soaked in the magnesium sulfate solution for 28 days and again reduced to 25.39 Mpa at 84 days. The average compressive strength of specimens bathed in the sodium sulfate solution for 28 days was 32.19 Mpa. It decreased to 28.03 Mpa at the age of 84 days. The results of this study show that the compressive strength of PCC concrete soaked in sodium sulfate meets the SNI 2847:2019 standard for sulfate classification S1, which is more than 28 Mpa. The compressive strength of PCC concrete immersed in magnesium sulfate for 1 month (28 days) is more than 28 MPa. It meets the standard as well. Yet, the compressive strength of PCC concrete soaked in magnesium sulfate for 3 months (84 days) does not meet the standard.
Performance Changes in Mass and Compressive Strength of High-Calcium Fly Ash Based Geopolymer Concrete Due to Sodium Sulphate Exposure Yuyun Tajunnisa; Nur Achmad Husin; Andri Kusbiantoro; Ahmad Daffa Azmi; Khansa Fadilah Ashara; Mitsuhiro Shigeishi
IPTEK The Journal of Engineering Vol 10, No 1 (2024)
Publisher : Lembaga Penelitian dan Pengabdian kepada Masyarakat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j23378557.v10i1.a16232

Abstract

The sulfate environment is one of the conditions that significantly affect the durability of concrete. Sulfate attack causes cracks and affects the quality of the concrete. Therefore, it is necessary to innovate concrete that can withstand the aggression of this sulfate attack. Geopolymer concrete is a breakthrough that can be developed as an alternative material without using Portland cement as the ingredients, yet by using class F fly ash as the primary source material. On the other hand, the availability of class C fly ash with high CaO content is highly abundant in Indonesia. The high calcium content in this fly ash will cause the fresh geopolymer concrete to harden rapidly. Previous studies used sucrose as an additive to overcome this rapid hardening problem. However, its effect on the geopolymer concrete exposed to sulfate ingression requires further investigation. In this study, the geopolymer concrete was produced by using class C fly ash and sucrose. The sulfate ingression was simulated by immersing the concrete specimen in the sodium sulfate solution while the mass changes and compressive strength were examined. pH measurement of the sodium sulfate solution was also carried out to provide a different perspective on the data analysis. Cylindrical specimens, measuring 10 cm x 20 cm, were produced using the dry-mixing method and the characteristic strength of 28 MPa according to SNI 2847–2019. From the results, geopolymer concrete with sucrose showed a high workability performance through the high slump value obtained. Nevertheless, the experimental results also indicated the declining strength of geopolymer concrete after the sulfate exposure. However, only a slight reduction was observed. The strength residue still satisfies the minimum requirement of SNI 2847-2019. It shows the potential of geopolymer concrete to be used as a construction material in a harsh environment with high sulfate content.