Debahuti Mishra
Siksha ‘O’ Anusandhan Deemed to be University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

An advance extended binomial GLMBoost ensemble method with synthetic minority over-sampling technique for handling imbalanced datasets Neelam Rout; Debahuti Mishra; Manas Kumar Mallick
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 4: August 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i4.pp4357-4368

Abstract

Classification is an important activity in a variety of domains. Class imbalance problem have reduced the performance of the traditional classification approaches. An imbalance problem arises when mismatched class distributions are discovered among the instances of class of classification datasets. An advance extended binomial GLMBoost (EBGLMBoost) coupled with synthetic minority over-sampling technique (SMOTE) technique is the proposed model in the study to manage imbalance issues. The SMOTE is used to solve the proposed model, ensuring that the target variable's distribution is balanced, whereas the GLMBoost ensemble techniques are built to deal with imbalanced datasets. For the entire experiment, twenty different datasets are used, and support vector machine (SVM), Nu-SVM, bagging, and AdaBoost classification algorithms are used to compare with the suggested method. The model's sensitivity, specificity, geometric mean (G-mean), precision, recall, and F-measure resulted in percentages for training and testing datasets are 99.37, 66.95, 80.81, 99.21, 99.37, 99.29 and 98.61, 54.78, 69.88, 98.77, 96.61, 98.68, respectively. With the help of the Wilcoxon test, it is determined that the proposed technique performed well on unbalanced data. Finally, the proposed solutions are capable of efficiently dealing with the problem of class imbalance.
Performance analysis of bitcoin forecasting using deep learning techniques Nrusingha Tripathy; Sarbeswara Hota; Debahuti Mishra
Indonesian Journal of Electrical Engineering and Computer Science Vol 31, No 3: September 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v31.i3.pp1515-1522

Abstract

The most popular cryptocurrency used worldwide is bitcoin. Many everyday folks and investors are now investing in bitcoin. However, it becomes quite difficult to evaluate or foresee the price of bitcoin. The price of bitcoin is extremely difficult to forecast due to its swings. By this point, machine learning has developed a number of models to examine the price behaviour of bitcoin using time series data. The digital money, a different type of payment developed utilising encryption methods, is difficult to forecast. By utilising encryption technology, cryptocurrencies may act as both a medium of exchange and a virtual accounting system. To estimate the values of a future time sequence, this work introduces a deep learning-based technique for time series forecasting that treats the current data as time series and extracts the key traits of the past. To overcome the shortcomings of conventional production forecasting, three algorithms-auto-regressive integrated moving averages (ARIMA), long-short-term memory (LSTM) network, and FB-prophet-were investigated and contrasted. We compared the models using historical bitcoin data of past eight years, from 2012 to 2020. The “FB-prophet” model, which is significant, catches variation that might draw attention and avert possible problems.