Syaiful Imron
Institut Sains dan Teknologi Terpadu Surabaya

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Deteksi Aspek Review E-Commerce Menggunakan IndoBERT Embedding dan CNN Syaiful Imron; Esther Irawati Setiawan; Joan Santoso
Intelligent System and Computation Vol 5 No 1 (2023): INSYST: Journal of Intelligent System and Computation
Publisher : Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52985/insyst.v5i1.267

Abstract

Dengan semakin berkembangnya teknologi informasi, maka muncul istilah e-commerce dalam dunia bisnis. Pada e-commerce ada fitur review, pelanggan dapat memberikan review berupa teks, gambar, dan bintang. Review tersebut merupakan opini dari pelanggan terkait barang yang dibeli. Tetapi pada kebanyakan e-commerce tidak ada fitur kategori terkait review hal ini membuat calon pembeli kesusahan dalam menganalisa secara manual. Aspect-based sentiment analysis (ABSA) merupakan solusi dari permasalahan tersebut. ABSA memiliki tiga tugas salah satunya Aspect Category Detection yang memiliki fungsi untuk menggabungkan review pelanggan menjadi beberapa aspek dimana aspek-aspek tersebut sudah didefinisikan terlebih dahulu. Cukup banyak penelitian terkait Aspect Category Detection dengan mengunakan machine learning. Dari beberapa metode yang diuji, Convolutional Neural Network (CNN) merupakan metode terbaik. Selain itu penggunaan BERT sebagai word embedding menghasilkan output yang bagus baik dari pada word embedding konvensional. Penelitian ini menggunakan dataset dari e-commerce Bukalapak dengan 3114 review dan 6 aspek (Akurasi, Pengiriman, Kualitas, Harga, Pengemasan, dan Pelayanan). Berdasarkan ujicoba dengan menggunakan IndoBERT sebagai word embedding dan CNN untuk deteksi aspek, maka didapatkan akurasi sebesar 94,86%. Dengan demikian model tersebut dapat digunakan untuk deteksi aspek. Selain itu, metode CNN mendapatkan hasil yang lebih baik dari pada metode LSTM.
Aspect Based Sentiment Analysis Marketplace Product Reviews Using BERT, LSTM, and CNN Syaiful Imron; Esther Irawati Setiawan; Joan Santoso; Mauridhi Hery Purnomo
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 7 No 3 (2023): Juni 2023
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v7i3.4751

Abstract

Bukalapak is one of the largest marketplaces in Indonesia. Reviews on Bukalapak are only in the form of text, images, videos, and stars without any special filters. Reading and analyzing manually makes it difficult for potential buyers. To help with this, we can extract this review by using aspect-based sentiment analysis because an entity cannot be represented by just one sentiment. Several previous research stated that using LSTM-CNN got better results than using LSTM or CNN. In addition, using BERT as word embedding gets better results than using word2vec or glove. For this reason, this study aims to classify aspect-based sentiment analysis from the Bukalapak marketplace with BERT as word embedding and using the LSTM-CNN method, where LSTM is for aspect extraction and CNN for sentiment extraction. Based on testing the LSTM-CNN method, it gets better results than LSTM or CNN. The LSTM-CNN model gets an accuracy of 93.91%. Unbalanced dataset distribution can affect model performance. With the increasing number of datasets used, the accuracy of a model will increase. Classification without using stemming on datasets can increase accuracy by 2.04%.