Ahmed Ghazy
Mechanical Engineering Department, College of Engineering, Jouf University, Sakaka, Al-Jouf

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Experimental thermal and electrical performances of a PVT-air collector coupled to a humidification-dehumidification (HDH) cycle Ahmed Ghazy
International Journal of Renewable Energy Development Vol 12, No 3 (2023): May 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.51808

Abstract

Despite their low electrical efficiencies, PVs are widely used to generate electricity from abundant solar energy. In order to maximize the utilization of incident solar energy, PVT collectors have been used to simultaneously generate electricity and thermal energy. Furthermore, combining PVTs with humidification-dehumidification (HDH) cycles can provide electricity and potable water in remote, arid rural areas that are not connected to the grid. In this paper, a PVT-air collector was coupled to an air-heated closed HDH cycle. Air was heated within the PVT collector and humidified by saline water spray inside the humidifier. Fresh water was produced by cooling humid air inside a dehumidifier that is cooled by saline water. The thermal and electrical performances of the PVT-HDH system were experimentally studied and compared to the electrical performance of a PV module with similar characteristics. The results demonstrated a significant decrease in PV temperature within the PVT-HDH system, which resulted in a 20% increase in the output power of the PVT-HDH system at midday compared to the identical PV module. In addition, the PVT-HDH system produced about 3.8 liters of water distillate for a PV module surface area of 1.48 m × 0.68 m, which contributed about 38% to the overall efficiency of the PVT-HDH system.
Theoretical study of a double-slope solar still with solar air heater condenser Ahmed Ghazy
International Journal of Renewable Energy Development Vol 12, No 6 (2023): November 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.53928

Abstract

Despite their limited water production and efficiency, double-slope solar stills are an appropriate solution for water scarcity in hot arid regions. Numerous studies have focused on enhancing the effectiveness of double-slope solar stills. In this context, this study introduces a double-slope solar with a solar air heater condenser (DSSS-SAHC). The back cover of a conventional double-slope solar still was replaced by a glass air heater in order to recover the still’s thermal losses in heating air. The transient performance of the DSSS-SAHC was investigated numerically under real weather conditions and compared to the performance of a conventional double-slope solar still (CDSSS) with the same aspects. The impact of various weather and operation factors on the DSSS-SAHC performance was investigated at air flows of 0.01 and 0.1 kg/s to account for both natural and forced air circulation, respectively. The results revealed an increase of about 15% and 6% in the thermal efficiency of the DSSS-SAHC over that of the CDSSS, respectively, at air flows of 0.1 and 0.01 kg/s despite the DSSS-SAHC distillate was insignificantly greater than that of the CDSSS at both air flows. In addition, the water distillate of the DSSS-SAHC increased as the solar irradiance increased, the ambient wind and ambient temperature had contrary effects on the efficiency, and the initial saline water level had a negligible impact on the overall performance
Experimental thermal and electrical performances of a PVT-air collector coupled to a humidification-dehumidification (HDH) cycle Ahmed Ghazy
International Journal of Renewable Energy Development Vol 12, No 3 (2023): May 2023
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.2023.51808

Abstract

Despite their low electrical efficiencies, PVs are widely used to generate electricity from abundant solar energy. In order to maximize the utilization of incident solar energy, PVT collectors have been used to simultaneously generate electricity and thermal energy. Furthermore, combining PVTs with humidification-dehumidification (HDH) cycles can provide electricity and potable water in remote, arid rural areas that are not connected to the grid. In this paper, a PVT-air collector was coupled to an air-heated closed HDH cycle. Air was heated within the PVT collector and humidified by saline water spray inside the humidifier. Fresh water was produced by cooling humid air inside a dehumidifier that is cooled by saline water. The thermal and electrical performances of the PVT-HDH system were experimentally studied and compared to the electrical performance of a PV module with similar characteristics. The results demonstrated a significant decrease in PV temperature within the PVT-HDH system, which resulted in a 20% increase in the output power of the PVT-HDH system at midday compared to the identical PV module. In addition, the PVT-HDH system produced about 3.8 liters of water distillate for a PV module surface area of 1.48 m × 0.68 m, which contributed about 38% to the overall efficiency of the PVT-HDH system.