Samira Salahi, Samira
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Optimal Operation of Micro-grids Considering the Uncertainties of Demand and Renewable Energy Resources Generation Jasemi, Malek; Adabi, Farid; Mozafari, Babak; Salahi, Samira
International Journal of Renewable Energy Development Vol 5, No 3 (2016): October 2016
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.5.3.233-248

Abstract

Nowadays, due to technical and economic reasons, the distributed generation (DG) units are widely connected to the low and medium voltage network and created a new structure called micro-grid. Renewable energies (especially wind and solar) based DGs are one of the most important generations units among DG units. Because of stochastic behavior of these resources, the optimum and safe management and operation of micro-grids has become one of the research priorities for researchers. So, in this study, the optimal operation of a typical micro-grid is investigated in order to maximize the penetration of renewable energy sources with the lowest operation cost with respect to the limitations for the load supply and the distributed generation resources. The understudy micro-grid consists of diesel generator, battery, wind turbines and photovoltaic panels. The objective function comprises of fuel cost, start-up cost, spinning reserve cost, power purchasing cost from the upstream grid and the sales revenue of the power to the upstream grid. In this paper, the uncertainties of demand, wind speed and solar radiation are considered and the optimization will be made by using the GAMS software and mixed integer planning method (MIP).Article History: Received May 21, 2016; Received in revised form July 11, 2016; Accepted October 15, 2016; Available onlineHow to Cite This Article: Jasemi, M.,  Adabi, F., Mozafari, B., and Salahi, S. (2016) Optimal Operation of Micro-grids Considering the Uncertainties of Demand and Renewable Energy Resources Generation, Int. Journal of Renewable Energy Development, 5(3),233-248.http://dx.doi.org/10.14710/ijred.5.3.233-248
Modeling Operation Problem of Micro-grids Considering Economical, Technical and Environmental issues as Mixed-Integer Non-Linear Programming Salahi, Samira; Bahramara, Salah
International Journal of Renewable Energy Development Vol 5, No 2 (2016): July 2016
Publisher : Center of Biomass & Renewable Energy, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/ijred.5.2.139-149

Abstract

Reduction of fossil resources, increasing the production of greenhouse gas emissions and demand growth lead to greater use of distributed energy resources in power system especially in distribution networks. Integrating these resources in order to supply local loads creates a new concept called micro-grid. Optimal operation of micro-grid in the specific time period is one of the most important problems of them. In this paper, the operation problem of micro-grids is modeled considering the economical, technical and environmental issues, as well as uncertainties related to loads, wind speed and solar radiation. The resulting model is a Mixed-Integer Non-Linear Programming (MINLP). To demonstrate the effectiveness of the proposed model, Bisheh village in Iran is considered as a case study. The results showed that considering load curtailment costs, the power losses of the main grid, the penalties of pollutant gasses emissions and the elimination of energy subsides will tremendous impacts on the operation of microgrids. Article History: Received March 12, 2016; Received in revised form June 20, 2016; Accepted July 2nd 2016; Available onlineHow to Cite This Article: Salahi, S., and Bahramara, S. (2016) Modeling Operation Problem of Micro-grids Considering Economical, Technical and Environmental issues as Mixed-Integer Non-Linear Programming. Int. Journal of Renewable Energy Development, 5(2), 139-149.http://dx.doi.org/10.14710/ijred.5.2.139-149Â