This Author published in this journals
All Journal Jurnal Gaussian
Arya Despa Ihsanuddin
Departemen Statistika, Fakultas Sains dan Matematika, Universitas Diponegoro

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

PENERAPAN METODE FUZZY TIME SERIES MENGGUNAKAN PARTICLE SWARM OPTIMIZATION ALGORITHM UNTUK PERAMALAN INDEKS SAHAM LQ45 Arya Despa Ihsanuddin; Dwi Ispriyanti; Tarno Tarno
Jurnal Gaussian Vol 12, No 1 (2023): Jurnal Gaussian
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/j.gauss.12.1.10-19

Abstract

Stocks have a volatile nature and it is difficult to predict the ups and downs. Therefore, stock data forecasting is done by investors to get a picture of future results. Fuzzy Time Series is a time series method that is suitable for forecasting fluctuating stock data because it does not require the fulfillment of assumptions such as normality and stationarity, but the Fuzzy Time Series method has weaknesses in determining intervals. So that in this study, interval optimization will be carried out on Fuzzy Time Series with Particle Swarm Optimization algorithm to predict LQ45 stock index data, Particle Swarm Optimization algorithm is used because it produces more optimal interval values compared to other optimization methods such as Genetic Algorithm. The data to be used is the closing price of the LQ45 stock index on January 5, 2020 to December 26, 2021. Forecasting using the Fuzzy Time Series method produces a SMAPE value of 1.53%, then after optimization using the Particle Swarm Optimization algorithm, the SMAPE value decreases to 1, 27%. Therefore, it can be concluded that optimization using Particle Swarm Optimization on Fuzzy Time Series produces a more optimal forecasting value.