Yunie Herawati
Universitas Pembangunan Nasional Veteran Yogyakarta

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Semi-supervised Learning Models for Sentiment Analysis on Marketplace Dataset Wisnalmawati Wisnalmawati; Agus Sasmito Aribowo; Yunie Herawati
International Journal of Artificial Intelligence & Robotics (IJAIR) Vol. 4 No. 2 (2022): November 2022
Publisher : Informatics Department-Universitas Dr. Soetomo

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (404.442 KB) | DOI: 10.25139/ijair.v4i2.5267

Abstract

Sentiment analysis aims to categorize opinions using an annotated corpus to train the model. However, building a high-quality, fully annotated corpus takes a lot of effort, time, and expense. The semi-supervised learning technique efficiently adds training data automatically from unlabeled data. The labeling process, which requires human expertise and requires time, can be helped by an SSL approach. This study aims to develop an SSL-Model for sentiment analysis and to compare the learning capabilities of Naive Bayes (NB) and Random Forest (RF) in the SSL. Our model attempts to annotate opinion documents in Indonesian. We use an ensemble multi-classifier that works on unigrams, bigrams, and trigrams vectors. Our model test uses a marketplace dataset containing rating comments scrapping from Shopee for smartphone products in the Indonesian Language. The research started with data preparation, vectorization using TF-IDF, feature extraction, modeling using Random Forest (RF) and Naïve Bayes (NB), and evaluation using Accuracy and F1-score. The performance of the NB model outperformed previous research, increasing by 5,5%. The conclusion is that SSL performance highly depends on the number of training data and the compatibility of the features or patterns in the document with machine learning. On our marketplace dataset, better to use Random Forest.