Salsabila Rabbani
STMIK Amik Riau

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Implementasi Algoritma Decision Tree dan Support Vector Machine untuk Klasifikasi Penyakit Kanker Paru: Implementation of Decision Tree Algorithm and Support Vector Machine for Lung Cancer Classification Dhini Septhya; Kharisma Rahayu; Salsabila Rabbani; Vindi Fitria; Rahmaddeni Rahmaddeni; Yuda Irawan; Regiolina Hayami
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 3 No. 1 (2023): MALCOM April 2023
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v3i1.591

Abstract

Kanker paru merupakan satu dari banyaknya penyebab kematian di dunia dengan persentase 11.6%, dengan tingkat kematian hingga 18,4%. Kanker paru merupakan salah satu penyakit yang mematikan karena kanker ini sulit dideteksi sebelum berubah menjadi penyakit yang serius dan saat ini belum ada metode skrining yang efektif untuk deteksi dini kanker paru. Pada penelitian ini dilakukan teknik klasifikasi yang merupakan suatu metode pengelompokkan data yang memiliki karakter yang sama ke dalam beberapa kelompok. Teknik klasifikasi yang diteliti membandingkan 2 algoritma yaitu, algoritma Decision Tree dan Support Vector Machine (SVM) untuk mengetahui algoritma yang memberikan hasil terbaik. Dalam penelitian ini akan dilakukan seleksi fitur menggunakan forward selection yang bertujuan untuk menaikkan nilai akurasi. Berdasarkan penelitian yang telah dilakukan dapatkan hasil dari algoritma SVM menggunakan feature selection mempunyai nilai akurasi yang lebih unggul yaitu 62,3% menggunakan splitting data 80:20.
Perbandingan Evaluasi Kernel SVM untuk Klasifikasi Sentimen dalam Analisis Kenaikan Harga BBM: Comparative Evaluation of SVM Kernels for Sentiment Classification in Fuel Price Increase Analysis Salsabila Rabbani; Dea Safitri; Nadila Rahmadhani; Al Amin Fadillah Sani; M. Khairul Anam
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 3 No. 2 (2023): MALCOM October 2023
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v3i2.897

Abstract

Kebijakan perubahan harga Bahan Bakar Minyak (BBM) oleh pemerintah pada September 2022 lalu menimbulkan kontroversi pengguna sosial media termasuk Twitter. Untuk memahami bagaimana perubahan kenaikan harga BBM apakah mempengaruhi persepsi dan emosi masyarakat di Twitter maka dalam penelitian ini dilakukan analisis sentimen menggunakan algoritma Support Vector Machine (SVM) dengan tiga jenis kernel berbeda, yaitu linier, RBF (Radial Basis Function), dan polinomial. Penelitian ini bertujuan untuk mengklasifikasikan tweet-tweet sebagai positif, negatif, atau netral, serta membandingkan kinerja ketiga kernel SVM tersebut. Penelitian ini juga mencoba mengatasi ketidakseimbangan kelas dengan menerapkan teknik SMOTE (Synthetic Minority Over-sampling Technique) oversampling pada dataset. Hasil penelitian menunjukkan bahwa pengguna Twitter dominan memberikan reaksi negatif terhadap kenaikan harga BBM. Dalam mengaplikasikan algoritma SVM, kernel RBF menghasilkan kinerja terbaik yaitu sebesar 87% menggunakan pembobotan kata TF-IDF. Selain itu, penggunaan pembobotan kata TF-IDF memiliki hasil akurasi terbaik dibandingkan dengan model pembobotan kata BoW. Penerapan teknik SMOTE oversampling dalam kernel polynomial pembobotan kata TF-IDF pada pembagian data 70:30 dan 80:20 berhasil meningkatkan kinerja algoritma sebesar 2%. Hasil penelitian ini memberikan wawasan mendalam tentang pandangan masyarakat terhadap kebijakan harga BBM dan memungkinkan pengambil keputusan publik serta industri untuk merancang kebijakan yang lebih responsif dan berpihak kepada kepentingan rakyat.
Evaluation of Support Vector Machine, Naive Bayes, Decision Tree, and Gradient Boosting Algorithms for Sentiment Analysis on ChatGPT Twitter Dataset Salsabila Rabbani; Dea Safitri; Farida Try Puspa Siregar; Rahmaddeni Rahmaddeni; Lusiana Efrizoni
Indonesian Journal of Artificial Intelligence and Data Mining Vol 7, No 1 (2024): March 2024
Publisher : Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24014/ijaidm.v7i1.24662

Abstract

ChatGPT is a language model employed to produce text and engage in conversation with users. It serves as a tool for generating text and facilitating interactions in a conversational manner. The model was designed to provide relevant and useful responses based on the context of the ongoing conversation. By the increasing popularity of using ChatGPT, it makes it difficult for users to classify responses about the use of ChatGPT. Therefore, sentiment classification of ChatGPT is carried out. The dataset used is sourced from the kaggle website with a total of 20,000 data. The classification methods used in this research include Support Vector Machine (SVM), Naïve Bayes, Decision Tree, and Gradient Boosting. Through the research results, the Support Vector Machine algorithm had the highest accuracy value with 80% compared to other methods, when the data is divided by a ratio of 90:10. This research is expected to help developers and service providers to improve ChatGPT and understand user responses better.