Pika Silvianti
Departemen Statistika, IPB University

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

Penanganan Pencilan pada Peramalan Data Deret Waktu Menggunakan Metode Pemulusan Holt dan Robust Holt Septanti Kusuma Dwi Arini; Farit Mochamad Afendi; Pika Silvianti
Xplore: Journal of Statistics Vol. 10 No. 2 (2021)
Publisher : Department of Statistics, IPB

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1018.304 KB) | DOI: 10.29244/xplore.v10i2.205

Abstract

The time series data used is time series data following the LLTM (local linear trend model) model with four different error conditions. These conditions are Clean Data (CD), Symmetric Outliers (SO), Asymmetric Outliers (AO) and Fat-tailed data (FT). The time series data contains symmetric and asymmetric outliers that can affect forecasting. The forecasting method used for the trend data pattern is the Holt smoothing method. The forecasting of the data series when it is spinning using the Holt smoothing method is not good enough so that it requires a handler with the smoothing method of Holt robustness. The Holt robustness smoothing method that is carried out on time series simulation data is better used for the condition of scattered data compared to the Holt smoothing method. This is indicated by the value of evaluating the goodness of the method, namely the value of MAD (Mean Absolute Deviation) produced. The smaller MAD value for CD condition training data is the Holt smoothing method, while the data testing method for Holt and robust Holt smoothing is almost comparable. SO's condition for training data and data testing for smaller MAD values is the smoothing method of robust Holt. The condition of AO for training data and data testing for smaller MAD values is the smoothing method of robust Holt. In addition, the MAD value in FT conditions for training data and data testing found almost comparable results between the two methods.
Pemodelan dengan Geographically Weighted Negative Binomial Regression (Studi kasus: Banyaknya Penderita Kusta di Jawa Barat) Khusnul Khotimah; Itasia Dina Sulvianti; Pika Silvianti
Xplore: Journal of Statistics Vol. 10 No. 3 (2021)
Publisher : Department of Statistics, IPB

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (805.227 KB) | DOI: 10.29244/xplore.v10i3.833

Abstract

The number of leper in West Java is an example of the count data case. The analyzes commonly used in count data is Poisson regression. This research will determine the variables that influence the number of leper in West Java. The data used is the number of leper in West Java in 2019. This data has an overdispersion condition and spatial heterogenity. To handle overdispersion, the negative binomial regression model can be employed. While spatial heterogenity is overcome by adding adaptive bisquare kernel weight. This research resulted Geographically Weighted Negative Binomial Regression (GWNBR) with a weighting adaptive bisquare kernel classifies regency/city in West Java into ten groups based on the variables that sigfinicantly influence the number of leper. In general, the variable in the percentage of households with Clean and Healthy Behavior (PHBS) has a significant effect in all regency/city in West Java. Especially for Bogor Regency, Depok City, Bogor City, and Pangandaran Regency, the variable of the percentage of people poverty does not have a significant effect on the number leper.
Latent Dirichlet Allocation dalam Identifikasi Respon Masyarakat Indonesia Terhadap Covid-19 Tahun 2020-2021 Karel Fauzan Hakim; Pika Silvianti; Agus Mohamad Soleh
Xplore: Journal of Statistics Vol. 10 No. 3 (2021)
Publisher : Department of Statistics, IPB

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (298.682 KB) | DOI: 10.29244/xplore.v10i3.836

Abstract

Covid-19 is a very troubling disease in Indonesia. Therefore, understanding public opinion is required to find solutions and evaluate the government performance in handling the pandemic. Twitter can be helpful to identify the public opinion of significant events. Twitter’s tweet is a large dimension text-based big data. It requires text sampling and text mining to be processed efficiently and effectively. Stratified random sampling with 20 repetitions applied to assume days as strata followed by topic modeling with latent Dirichlet allocation (LDA). This research aims to find out public opinion regarding Covid-19 and itsgrowth over time. Other than that, this research also aims to find out sampling effects on tweet data using stratified random sampling. Therefore, the extracted topics will be transformed into time-series data and considering the variety of the pattern made. Afterward, the transformation results will be explored and interpreted. This research suggests that discussions related to Covid-19 are divided into four topics by the first model, namely: “Vaccine”, “Positive or affected people”, “Health protocol”, and “Indonesia” then nine topics by the second model, namely: “Vaccine”, “Prayer”, “Health protocol”, “Social aid and corruption”, “Affected people”, “Indonesian economy”, “Work”, “Persuading to wear mask”, and “Willing to watch”. Furthermore, some topics peak whenever a significant event occurs in Indonesia. Afterward, this research suggests that 20 repetitions of stratified random sampling could provide good results.
Penggerombolan Mutu SMA/MA per Provinsi Berdasarkan Hasil Akreditasi Menggunakan Metode Fuzzy C-Means Rifannisa Bahar; Pika Silvianti; Budi Susetyo
Xplore: Journal of Statistics Vol. 10 No. 3 (2021)
Publisher : Department of Statistics, IPB

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (482.328 KB) | DOI: 10.29244/xplore.v10i3.842

Abstract

Mapping the quality of education in Indonesia needs to be studied so that the provincial government, as the institution responsible for secondary education management policies, can more easily determine priorities and what actions will be taken to improve the quality of education in Indonesia. One of the analytical methods that can be used to map the quality of education is fuzzy c-means. This research aims to classify the quality maps of provinces in Indonesia based on the results of SHS/MA accreditation using the fuzzy c-means method. The fuzzy c-means method can show the probability of objects entering a cluster with a degree of membership. The optimum cluster sizes obtained were 2 and 3. The final solution with cluster size 2 was 12 provinces categorized in cluster 1 and 22 provinces categorized in cluster 2. Clustering with cluster size 3 resulted in cluster 1 consisting of 11 provinces, cluster 2 consisting of 16 provinces, and cluster 3, which consists of 7 provinces. The main character of cluster 1 is a high national education standard score, while the main character of cluster 2 is a low national education standard score. Then the main character of group 3 is the national standard score, whose value is around the national average.