This Author published in this journals
All Journal Jurnal Teknik ITS
Aldy Helnawan
Departemen Teknik Elektro Institut Teknologi Sepuluh Nopember Surabaya

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Sistem Segmentasi Jalan dan Objek untuk Kendaraan Otonom Menggunakan Kamera RGB-D Aldy Helnawan; Muhammad Attamimi; Astria Nur Irfansyah
Jurnal Teknik ITS Vol 12, No 1 (2023)
Publisher : Direktorat Riset dan Pengabdian Masyarakat (DRPM), ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j23373539.v12i1.110848

Abstract

Kendaraan roda empat yang memiliki kemampuan untuk melakukan perjalanan antar titik tanpa adanya operator manusia yang dimana menggunakan kombinasi antar sensor, kamera, radar, dan kecerdasan buatan (AI). Penggunaan kamera RGBDNIR (Red Green Blue Depth Near Infrared) dengan alat yaitu kamera Intel RealSense D435i yang dapat digunakan baik didalam ataupun diluar ruangan dimana sensor modul depth dan NIR dapat digunakan ketika keadaan kurang pencahayaan atau lingkungan redup. Dilakukannya penelitian ini dikarenakan untuk mencari solusi dari tingginya tingkat kecelakaan di jalan serta mencari solusi atas kelemahannya kamera RGB dalam penangkapan citra untuk yang dipadukan dengan penggunaan machine learning untuk pengambilan keputusan dalam menentukan kelas objek yang terdeteksi dan diproses untuk menghasilkan solusi dalam melakukan segmentasi di lingkungan terbuka (luar ruangan). Untuk perangkat lunak pemprograman yang akan digunakan yaitu Python serta pustaka yang akan digunakan antara lain PyTorch, OpenCV, dan TensorFlow dengan alat komputasi berupa laptop yang memiliki GPU Nvidia RTX 3060 atau sejenisnya. Hasil dari penelitian ini berupa gambar segmentasi dan pengenalan kelas objek yang terdeteksi dengan tingkat keakuratan dengan beberapa model mulai dari 39.60% hingga 63.71% yang dapat digunakan untuk penentuan kelas yang terbaca. Dengan tingkat literasi beragam sampai nilai terkecil 2E-10 dan memiliki waktu pemprosesan untuk setiap citra dari 0.22 detik sampai 0.01 detik.