p-Index From 2020 - 2025
0.444
P-Index
This Author published in this journals
All Journal Metalurgi
Vinda Puspasari
Indonesian Institute of Sciences

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

THE EFFECT OF ECAP PROCESSING TO HARDNESS, SURFACE MORPHOLOGI, AND CORROSION RESISTANCE OF 6061 ALUMINIUM ALLOYS Vinda Puspasari; I. Nyoman Gede P. A.; Efendi Mabruri; Satrio Herbirowo; Edy Priyanto Utomo
Metalurgi Vol 36, No 2 (2021): Metalurgi Vol. 36 No. 2 Agustus 2021
Publisher : National Research and Innovation Agency (BRIN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1034.463 KB) | DOI: 10.14203/metalurgi.v36i2.589

Abstract

Al-Mg-Si alloys (6xxx) has been widely used as structural materials in building and vehicles because of its excellent strength and corrosion resistance. The improvement of fine grain microstructure which can increase mechanical and physical properties become an interesting field in recent research.. Equal channel angular press is the most promising method to apply severe plastic deformation (SPD) which can produce ultra-fine grain in the bulk material without residual porosity. This study presents some experiments results on the effect of ECAP number of passes variation to the hardness, microstructure, and corrosion behaviour of Al 6061 alloys. The samples were annealed in the furnace with argon gas environment at 530°C for 4 hours and then immersed in liquid nitrogen for 5 minutes before ECAP process. The ECAP process was done with Bc route using dies with 120° of internal channel angle and pass variation of 1, 2, 3, and 4. The optimum hardness is 107.58 HRB in Al 6061 samples with 3 passes of ECAP. The increasing ECAP number of passes leads to a significant grain size reduction from 0 way pass, the grain size is around 10 µm, while for a 4 way pass, the grain size is around 2.5 µm. The corrosion resistance of Al 6061 alloys increased with the increasing number of passes in ECAP process.
Pengaruh Annealing terhadap Sifat Keras dan Struktur Mikro Baja Tahan Karat AISI 410-3Mo-3Ni Vinda Puspasari; Mukhlis Agung Prasetyo; Januarius Velix Ta’an Halab; Moch. Syaiful Anwar; Efendi Mabruri; Satrio Herbirowo
Metalurgi Vol 35, No 2 (2020): Metalurgi Vol. 35 No. 2 Agustus 2020
Publisher : National Research and Innovation Agency (BRIN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1691.682 KB) | DOI: 10.14203/metalurgi.v35i2.560

Abstract

AISI 410-3Mo-3Ni stainless steel is a martensitic steel which limited in using when compared to austenitic and ferritic stainless steels. Martensitic steel has an essential role in specific components due to a combination of strength, toughness and excellent corrosion resistance. However, martensitic steel tends to undergo decreasing in mechanical properties and microstructure after the forging process. In this study, mechanical properties and microstructure of the forged AISI 410 after receiving annealing heat treatment will be studied. Annealing aims to reduce material hardness and increase grain refinement of material. Annealing heat treatment is carried out by varying the annealing temperature and time. Annealing temperature variations are 7000, 7600, and 8000C. The annealing time variation is 3 hours and 6 hours. The effect of annealing time and temperature will be studied on the hardness and microstructure of the AISI 410 modified material. The optimum hardness of 35.9 HRC in sample with annealing treatment in 760°C for 6 hours. The microstructure shows delta ferrite, martensite, austenite, and carbide phases which affect hardness value of annealed samples.