Muhaini Othman, Muhaini
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Optimizing Genetic Algorithm by Implementation of An Enhanced Selection Operator BinJubier, Mohammed; Ismail, Mohd Arfian; Othman, Muhaini; Kasim, Shahreen; Amnur, Hidra
JOIV : International Journal on Informatics Visualization Vol 8, No 3-2 (2024): IT for Global Goals: Building a Sustainable Tomorrow
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.8.3-2.3449

Abstract

The Traveling Salesman Problem (TSP) represents an extensively researched challenge in combinatorial optimization. Genetic Algorithms (GAs), recognized for their nature-inspired approach, stand as potent heuristics for resolving combinatorial optimization problems. Nevertheless, GA exhibits inherent deficiencies, notably premature convergence, which diminishes population diversity and consequential inefficiencies in computational processes. Such drawbacks may result in protracted operations and potential misallocation of computational resources, particularly when confronting intricate NP-hard optimization problems. To address these challenges, the current study underscores the pivotal role of the selection operator in ameliorating GA efficiency. The proposed methodology introduces a novel parameter operator within the Stochastic Universal Selection (SUS) framework, aimed at constricting the search space and optimizing genetic operators for parent selection. This innovative approach concentrates on selecting individuals based on their fitness scores, thereby mitigating challenges associated with population sorting and individual ranking while concurrently alleviating computational complexity. Experimental results robustly validate the efficacy of the proposed approach in enhancing both solution quality and computational efficiency, thereby positioning it as a noteworthy contribution to the domain of combinatorial optimization.
Customer Loyalty Prediction for Hotel Industry Using Machine Learning Approach Hamdan, Iskandar Zul Putera; Othman, Muhaini; Mohmad Hassim, Yana Mazwin; Marjudi, Suziyanti; Mohd Yusof, Munirah
JOIV : International Journal on Informatics Visualization Vol 7, No 3 (2023)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.7.3.1335

Abstract

Today, machine learning is utilized in several industries, including tourism, hospitality, and the hotel industry. This project uses machine learning approaches such as classification to predict hotel customers’ loyalty and develop viable strategies for managing and structuring customer relationships. The research is conducted using the CRISP-DM technique, and the three chosen classification algorithms are random forest, logistic regression, and decision tree. This study investigated key characteristics of merchants’ customers’ behavior, interest, and preference using a real-world case study with a hotel booking dataset from the C3 Rewards and C3 Merchant systems. Following a comprehensive investigation of prospective preferences in the pre-processing phase, the best machine learning algorithms are identified and assessed for forecasting customer loyalty in the hotel business. The study's outcome was recorded and examined further before hotel operators utilized it as a reference. The chosen algorithms are developed utilizing Python programming language, and the analysis result is evaluated using the Confusion Matrix, specifically in terms of precision, recall, and F1-score. At the end of the experiment, the accuracy values generated by the logistic regression, decision tree, and random forest algorithms were 57.83%, 71.44%, and 69.91%, respectively. To overcome the limits of this study method, additional datasets or upgraded algorithms might be utilized better to understand each algorithm's benefits and limitations and achieve further advancement.Â