Claim Missing Document
Check
Articles

Found 3 Documents
Search

ANALISIS RESPON 4D MICROGRAVITY BERDASARKAN INTEGRASI DATA MODEL GEOLOGI DAN SIMULASI RESERVOIR PADA LAPANGAN TBN Dyah Ayu Setyorini; Wawan Gunawan A. Kadir; Eko Widianto
PETRO:Jurnal Ilmiah Teknik Perminyakan Vol. 10 No. 3 (2021): SEPTEMBER
Publisher : Jurusan Teknik Perminyakan Fakultas Teknologi Kebumian dan Energi Universitas Trisakti

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (658.193 KB) | DOI: 10.25105/petro.v10i3.10861

Abstract

Salah satu pengembangan dari metode gayaberat adalah metode gayaberat mikro 4D (metode gayaberat selang waktu), dengan dimensi keempatnya adalah waktu. Namun disisi lain ada juga metode yang biasa dilakukan oleh para Petroleum Engineering, yaitu simulasi reservoir. Dengan metode simulasi reservoir, kondisi reservoir dalam keadaan sesungguhnya disimulasikan dengan menggunakan pemodelan komputer sebagai sebuah sistem yang memiliki sejumlah sel atau blok yang saling terhubungkan. Dalam penelitian pada Lapangan TBN ini telah dilakukan penggabungan kedua metode tersebut, diharapkan mendapatkan model dinamika fluida bawah permukaan menjadi lebih baik. Pengambilan data akuisisi dilakukan tiga kali yaitu pada September 2004, November 2006 dan November 2007. Anomali gayaberat mikro selang waktu diperoleh dari proses pengurangan data gayaberat observasi setelah dilakukan koreksi pasang surut (tide), koreksi apungan (drift) dan low pass filter pada 400m dengan  = 1000m yang menghasilkan dua peta anomali gayaberat selang waktu yaitu pengukuran I September 2004-November 2006 dan pengukuran II September 2004-November 2007. Berdasarkan peta anomali gayaberat mikro selang waktu dan model perubahan densitas fluida dengan didukung oleh data geologi dapat mengidentifikasikan anomali negatif yang terkait dengan pengurangan massa fluida karena kegiatan produksi. Selain itu, pergerakan fluida dikendalikan oleh struktur sesar dengan arah utara-selatan dan timur-barat. Sebagai kesimpulan, tinjauan komprehensif yang melibatkan gayaberat mikro 4D, geologi dan produksi reservoir menghasilkan model reservoir baru dimana dari hasil gayaberat selang waktu pengukuran terdapat tiga bagian reservoir pada bagian utara , tengah dan selatan. 
PEMODELAN TIME-LAPSE MICROGRAVITY UNTUK ESTIMASI PERUBAHAN MUKA AIRTANAH DI BANDUNG, JAWA BARAT Eko Januari Wahyudi; Wawan Gunawan A. Kadir; Susanti Alawiyah; Setianingsih Setianingsih; Indra Gunawan; Dadi Abdurrahman
JURNAL SUMBER DAYA AIR Vol 19, No 2 (2023)
Publisher : Bina Teknik Sumber Daya Air, Kementerian Pekerjaan Umum dan Perumahan Rakyat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32679/jsda.v19i2.858

Abstract

ABSTRACT Studies related to groundwater monitoring using geophysical methods have been carried out since the 1990s. Surface gavity data with a scheme of relative gravimeter measurements is chosen for monitoring in urban areas because it is quite fast, easy, affordable, and relatively low-impact on the environment. The significance of the time-lapse microgravity method for the target of this study depends on changes in the mass of water in the aquifer layer below the surface. The research area in this study covers the city of Bandung and several surrounding areas with an interpolated grid coverage of (18 x 17) km2. Gravity changes were determined by six repeated surveys at the same observation points from 2010 to 2021. The aim of this research is to develop a method for estimating groundwater table changes based on time-lapse microgravity data modeling. The complexity of subsurface density changes is simplified for two parts related to near surface density changes and density changes in the intermediate aquifer layer. The trend of groundwater table data in 2010 is used as a reference to determine estimates for 2015, 2016 (February and August), 2019, and 2021. Modeling results for intermediate aquifers (confined groundwater system) provide changes in groundwater levels from 2010 with estimates reached ±23 meters, while the results of modeling at near surface (shallow groundwater level) indicate a groundwater level change of approximately ±8 meters from the year 2010.Keywords:       microgravity, groundwater, modeling, hydrology, aquifer. ABSTRAKStudi terkait pemantauan airtanah dengan metode geofisika telah dilakukan sejak tahun 1990-an. Data gravity di permukaan dengan skema pengukuran gravimeter relatif dipilih pada pemantauan di area perkotaan karena cukup cepat, mudah, murah, dan relatif tidak merusak lingkungan. Signifikansi metode time-lapse microgravity pada target studi ini bergantung pada perubahan massa air pada lapisan akuifer di bawah permukaan. Area penelitian pada studi ini mencakup Kota Bandung dan beberapa area di sekitarnya dengan cakupan luasan interpolasi grid (18 x 17) km2. Perubahan gravitasi ditentukan oleh enam kali survei berulang pada beberapa titik pengamatan yang sama sejak 2010 sampai 2021. Tujuan dari penelitian ini adalah mengembangkan metode untuk mengestimasi perubahan muka airtanah berdasarkan pemodelan data time-lapse microgravity. Kompleksitas perubahan densitas di bawah permukaan disederhanakan untuk dua bagian terkait perubahan densitas dekat permukaan dan perubahan densitas pada lapisan akuifer menengah. Kecenderungan dari data muka airtanah pada tahun 2010 digunakan sebagai acuan untuk menentukan estimasi pada tahun 2015, 2016 (Februari dan Agustus), 2019, dan 2021. Hasil pemodelan pada akuifer menengah (sistem airtanah tertekan) memberikan perubahan muka airtanah dari tahun 2010 dengan estimasi mencapai ±23 meter, sedangkan hasil pemodelan pada kedalaman yang lebih dangkal (muka airtanah dangkal) menunjukkan perubahan muka airtanah mencapai ±8 meter dari tahun 2010.Kata Kunci:             microgravity, airtanah, pemodelan, hidrologi, akuifer
4D Seismic Monitoring in Highly Populated Area: Study of CCUS in Sukowati Oil Field, East Java Oki Hedriana; Rachmat Sule; Wawan Gunawan A. Kadir; Asep K. Permadi; Djoko Santoso; Junita Trivianty; Dewi Mersitarini; Dimas Ardiyanta; Sofyan Sumarna
Scientific Contributions Oil and Gas Vol 48 No 3 (2025)
Publisher : Testing Center for Oil and Gas LEMIGAS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29017/scog.v48i3.1781

Abstract

 Indonesia is resolutely addressing climate change with a commitment to reduce carbon emissions by 29% in 2030, and we are on track to achieve net-zero emissions in 2050. This country acknowledges the important role of Carbon Capture, Utilization, and Storage (CCUS) in mitigating carbon emissions, especially from the energy sector, and at the same time increasing oil and gas production. This kind of approach is also well known as CO2-EOR (Enhanced Oil Recovery) and CO2-EGR (Enhanced Gas Recovery). Sukowati field is situated in the East Java Province and will serve as a pioneering CO2 Enhanced Oil Recovery (EOR) project aimed at revitalizing the field. This initiative focuses on increasing oil production while capturing and storing carbon dioxide (CO2), contributing to environmental sustainability. To ensure its success, a robust monitoring system must be implemented for real-time data collection and analysis, optimizing recovery processes and minimizing environmental impact. Monitoring activities deliver information regarding the CO2 injected into the reservoir and the risk of leakage into the surrounding injection region. Several methods are discussed for monitoring CO2 plumes, but in the subsurface, seismic methods stand out as the most promising option. However, despite their effectiveness, seismic methods are also among the most expensive to execute, necessitating significant investment in technology and expertise to ensure accurate and reliable data. 4D seismic, also known as time-lapse seismic, entails performing repeated seismic surveys over a designated area to monitor changes in the subsurface effectively. This imaging technique enables us to visualize the movement of CO2 plumes within the target formation and can identify alterations in the reservoir that may suggest a potential CO2 leak. A seismic survey before the injection is needed to create a baseline image of the subsurface target reservoir. Changes in velocity and amplitude are identified when the seismic waves encounter the CO2 plumes injected into the reservoir target. The challenges of performing a 4D seismic imaging survey in a densely populated area are social impact, the possibility of damaging infrastructure, high noise levels, and high operating costs, particularly if it uses a subterranean explosive (dynamite) as a source of seismic signals. To address these challenges, the study introduces a novel approach to designing irregular 4D seismic surveys. This method features a flexible acquisition layout that departs from traditional geometric symmetry. The survey utilizes a non-impulsive (vibrator) of semi-permanent seismic source and a highly sensitive, wireless seismic recording system. The irregular design is adaptively tailored based on the field's spatial characteristics, potential surface disruptions, and cost considerations. Despite not adhering to a conventional grid or orthogonal configuration, this approach ensures adequate offset and azimuth coverage necessary for detecting subsurface changes.