Rohayanti Hassan, Rohayanti
Unknown Affiliation

Published : 5 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : JOIV : International Journal on Informatics Visualization

A Hybrid Approach for Malicious URL Detection Using Ensemble Models and Adaptive Synthetic Sampling Sujon, Khaled Mahmud; Hassan, Rohayanti; Zainodin, Muhammad Edzuan; Salamat, Mohamad Aizi; Kasim, Shahreen; Alanda, Alde
JOIV : International Journal on Informatics Visualization Vol 9, No 5 (2025)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.9.5.4627

Abstract

Malicious URLs pose a significant cybersecurity threat, often leading to phishing attacks, malware infections, and data breaches. Early detection of these URLs is crucial for preventing security vulnerabilities and mitigating potential losses. In this paper, we propose a novel approach for malicious URL detection by combining ensemble learning methods with ADASYN-based oversampling to address the class imbalance typically found in malicious URL datasets. We evaluated three popular machine learning classifiers, including XGBoost, Random Forest, and Decision Tree, and incorporated ADASYN (Adaptive Synthetic Sampling) to handle the class-imbalanced nature of our selected dataset. Our detailed experiments demonstrate that the application of ADASYN can significantly increase the performance of the predictive model across all metrics. For instance, XGBoost saw a 2.2% improvement in accuracy, Random Forest achieved a 1.0% improvement in recall, and Decision Tree displayed a 3.0% improvement in F1-score. The Decision Tree model, in particular, showed the most substantial improvements, particularly in recall and F1-score, indicating better detection of malicious URLs. Finally, our findings in this research highlighted the potential of ensemble learning, enhanced by ADASYN, for improving malicious URL detection and demonstrated its applicability in real-world cybersecurity applications.
The Effects of Imbalanced Datasets on Machine Learning Algorithms in Predicting Student Performance Sujon, Khaled Mahmud; Hassan, Rohayanti; Khairudin, Alif Ridzuan; Moi, Sim Hiew; Mohd Shafie, Muhammad Luqman; Saringat, Zainuri; Erianda, Aldo
JOIV : International Journal on Informatics Visualization Vol 8, No 3-2 (2024): IT for Global Goals: Building a Sustainable Tomorrow
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.8.3-2.2449

Abstract

Predictive analytics technologies are becoming increasingly popular in higher education institutions. Students' grades are one of the most critical performance indicators educators can use to predict their academic achievement. Academics have developed numerous techniques and machine-learning approaches for predicting student grades over the last several decades. Although much work has been done, a practical model is still lacking, mainly when dealing with imbalanced datasets. This study examines the impact of imbalanced datasets on machine learning models' accuracy and reliability in predicting student performance. This study compares the performance of two popular machine learning algorithms, Logistic Regression and Random Forest, in predicting student grades. Secondly, the study examines the impact of imbalanced datasets on these algorithms' performance metrics and generalization capabilities. Results indicate that the Random Forest (RF) algorithm, with an accuracy of 98%, outperforms Logistic Regression (LR), which achieved 91% accuracy. Furthermore, the performance of both models is significantly impacted by imbalanced datasets. In particular, LR struggles to accurately predict minor classes, while RF also faces difficulties, though to a lesser extent. Addressing class imbalance is crucial, notably affecting model bias and prediction accuracy. This is especially important for higher education institutes aiming to enhance the accuracy of student grade predictions, emphasizing the need for balanced datasets to achieve robust predictive models.
Exploring Current Methods and Trends in Text Summarization: A Systematic Mapping Study Ahmad Raddi, Muhammad Faris Faisal; Hassan, Rohayanti; Zakaria, Noor Hidayah; Sahid, Mohd Zanes; Omar, Nurul Aswa; Firosha, Ardian
JOIV : International Journal on Informatics Visualization Vol 8, No 3-2 (2024): IT for Global Goals: Building a Sustainable Tomorrow
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.8.3-2.1654

Abstract

This paper presents a systematic mapping study of the current methods and trends in text summarization, a challenging task in natural language processing that aims to condense information from one or multiple documents into a concise and coherent summary. The paper focuses on applying text summarization for the Malay language, which has received less attention than other languages. The paper employs a three-phased quality assessment procedure to filter and analyze 27 peer-reviewed publications from seven prominent digital libraries, covering 2016 to 2024. The paper addresses two research questions: (1) What is the extent of research on text summarization, especially for the Malay language and the education domain? and (2) What are the current methods and approaches employed in text summarization, with a focus on addressing specific problems and language contexts? The paper synthesizes and discusses the findings from the literature review and provides insights and recommendations for future research directions in text summarization. The paper contributes to advancing knowledge and understanding of the state-of-the-art techniques and challenges in text summarization, particularly for the Malay language.