This Author published in this journals
All Journal CYBERNETICS
Rodibelle F Leona
Nueva Ecija University of Science and Technology

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Perbandingan Model Arima dan Deep Learning untuk Peramalan Kasus Covid-19 Izhan Fakhruzi; Alda Cendekia Siregar; Putri Yuli Utami; Rodibelle F Leona
CYBERNETICS Vol 6, No 02 (2022): CYBERNETICS
Publisher : Universitas Muhammadiyah Pontianak

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29406/cbn.v6i02.5557

Abstract

Jumlah kasus Covid-19 di kawasan Asia Tenggara terbilang tinggi. Di Asia Tenggara, Indonesia memiliki jumlah kasus dan kematian positif covid-19 tertinggi, diikuti oleh Filipina dan Malaysia. Penelitian ini bertujuan untuk menggunakan metode peramalan time series untuk memprediksi jumlah kasus Covid-19 sehingga akan membantu pemerintah di kawasan Asia Tenggara untuk membuat kebijakan berdasarkan hasil peramalan tersebut. Dua metode peramalan populer untuk data time series adalah Autoregressive Integrated Moving Average (ARIMA) dan Long Short Term Memory (LSTM). Kedua metode tersebut dibandingkan performa dan akurasinya untuk memprediksi jumlah kasus Covid-19. Hasil eksperimen menunjukkan bahwa LSTM mengungguli ARIMA dalam memprediksi jumlah kasus covid-19 di Asia Tenggara.