Claim Missing Document
Check
Articles

Found 7 Documents
Search

Studi Parametrik pada Flapping-Wing MAV dengan Bentuk Sayap Belalang, Kupu-kupu dan Kumbang Yudhono, Reo; Erissonia, Arfie Armelia; Ardianto, Haris
SENATIK STT Adisutjipto Vol 3 (2017): Dukungan Teknologi Untuk Pengembangan Industri Dirgantara Indonesia
Publisher : Sekolah Tinggi Teknologi Adisutjipto

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (114.162 KB) | DOI: 10.28989/senatik.v3i0.102

Abstract

Nature has been a great inspiration for engineering design. Flying insect, in specific, has been studied and being an inspiration in the development of flapping-wing micro aerial vehicle (FW-MAV). Each species of flying insect has its own wing kinematics, but most all of them generate the aerodynamic force with the same of three mechanism: delayed stall, rotational circulation and wake capture[1]. In this research, we conduct a parametric study on the FW-MAV with different wing shapes. There are two designs of the FW-MAV in this study, which have flapping angle of 80 and 120 deg. The three different shapes of wings are mimics from: desert locust, Monarch butterfly and rhinoceros beetle. The wings then attached to the FW-MAV and operated with voltage input of 1.5V. The force generated by the FW-MAV and the electrical current measured in a swing test, while recorded in 240 fps using action camera. From the test, we get the flapping frequency, generated horizontal force and power consumption. From this research we have several data that can be used for the further development of the FW-MAV.
Studi Parametrik pada Flapping-Wing MAV dengan Bentuk Sayap Belalang, Kupu-kupu dan Kumbang Reo Yudhono; Arfie Armelia Erissonia; Haris Ardianto
SENATIK STT Adisutjipto Vol 3 (2017): Dukungan Teknologi Untuk Pengembangan Industri Dirgantara Indonesia
Publisher : Institut Teknologi Dirgantara Adisutjipto

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28989/senatik.v3i0.102

Abstract

Nature has been a great inspiration for engineering design. Flying insect, in specific, has been studied and being an inspiration in the development of flapping-wing micro aerial vehicle (FW-MAV). Each species of flying insect has its own wing kinematics, but most all of them generate the aerodynamic force with the same of three mechanism: delayed stall, rotational circulation and wake capture[1]. In this research, we conduct a parametric study on the FW-MAV with different wing shapes. There are two designs of the FW-MAV in this study, which have flapping angle of 80 and 120 deg. The three different shapes of wings are mimics from: desert locust, Monarch butterfly and rhinoceros beetle. The wings then attached to the FW-MAV and operated with voltage input of 1.5V. The force generated by the FW-MAV and the electrical current measured in a swing test, while recorded in 240 fps using action camera. From the test, we get the flapping frequency, generated horizontal force and power consumption. From this research we have several data that can be used for the further development of the FW-MAV.
PERANCANGAN SISTEM KENDALI MENIRU BURUNG UNTUK UNMMANED AERIAL VEHICLE BERKONFIGURASI SAYAP TETAP admin admin; Reo Yudhono; Arfie Armelia Erissonia
Teknika STTKD: : Jurnal Teknik, Elektronik, Engine Vol 5 No 2 (2018): Teknika STTKD: Jurnal Teknik, Elektronik, Engine
Publisher : Sekolah Tinggi Teknologi Kedirgantaraan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (631.881 KB)

Abstract

Bird is the main inspiration in the development of aircraft. The control mechanism on bird’s wing and tail, with simplification, has been applied to aircraft. Bird has simple yet advance control mechanism. Bird’s wing and tail have ability to morph its shape during the flight, in terms of stabilization and control. In this research, we design a control system mimicking bird control mechanism. Both the control surface and it’s mechanism is design mimicking the them on bird. The control surface on wings are the whole outer part of wing. While the tail can be rotate on 2 axis: longitudinal axis and it’s perpendicular axis. A simulation platform is made to shows how the designed control system’s works, which this control system will be installed to the bird-mimicking UAV airframe later. The components that used in the control system are: battery, autopilot (flight controller), servo, motor controller, motor and receiver. The designed control system has shown good respon to the given control command.
RANCANG BANGUN AIRFRAME UNMANNED AERIAL VEHICLE BERSAYAP TETAP MENIRU BURUNG Arfie Armelia Erissonia; Reo Yudhono
Teknika STTKD: : Jurnal Teknik, Elektronik, Engine Vol 5 No 1 (2018): Teknika STTKD: Jurnal Teknik, Elektronik, Engine
Publisher : Sekolah Tinggi Teknologi Kedirgantaraan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (419.905 KB)

Abstract

Burung adalah penerbang alami dan telah menjadi inspirasi dalam pengembangan desain pesawat terbang. Pesawat terbang heavier-than-air pertama yang sukses mengudara, “The Flyer” milik Wright bersaudara, juga didesain dengan meniru prinsip-prinsip kinematika sayap burung. Pada penelitian ini, kami melakukan perancangan dan pembuatan purwarupa airframe unmanned aerial vehicle (UAV) berkonfigurasi sayap tetap dengan bentuk meniru burung Euroasian sparrowhawk (accipter nisus). Material yang digunakan pada pembuatan purwarupa antara lain plastik ABS dari proses 3D printing, kayu balsa, styrofoam dan komposit karbon. Dari purwarupa yang dibuat, didapatkan berat kosong dari UAV sebesar 360 gr. Dengan besar maximum take-off weight (MTOW) berdasarkan desain sebesar 600 gr, maka UAV dapat membawa payload hingga 240 gr. Posisi center of gravity (c.g) dari purwarupa UAV berada di 106,37 mm dari hidung pesawat, atau kira-kira berada di 25% mean aerodynamic chord (m.a.c).
RANCANG BANGUN MEKANISME FLAPPING-WING MENIRU KUPU-KUPU UNTUK PENGEMBANGAN MICRO AERIAL VEHICLE (MAV) Reo Yudhono; Arfie Armelia Erissonia
Teknika STTKD: : Jurnal Teknik, Elektronik, Engine Vol 4 No 1 (2017): Teknika STTKD: Jurnal Teknik, Elektronik, Engine
Publisher : Sekolah Tinggi Teknologi Kedirgantaraan

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (966.305 KB)

Abstract

Pada penelitian ini kami melakukan studi untuk merancang mekanisme flapping-wing yang meniru kupu-kupu Monarch. Hasil dari penelitian ini akan menjadi dasar untuk pengembangan Micro Aerial Vehicle (MAV) berkonfigurasi sayap kepak. Serangga terbang telah mengambil perhatian khusus dari para peneliti, terutama sebagai inspirasi dalam pengembangan flapping-wing MAV. Secara umum, serangga terbang menggunakan tiga kombinasi mekanisme: delayed stall, rotational circulation dan wake capture [5]. Beberapa serangga juga menggunakan mekanisme clap and fling untuk meningkatkan gaya aerodinamikanya. Kupu-kupu adalah salah satu serangga terbang yang memiliki jumlah spesies terbesar di dunia. Pemilihan kupu-kupu sebagai referensi desain adalah karena ukuran sayapnya yang besar, sehingga mudah untuk diobservasi, dan frekuensi kepakan sayapnya yang relatif rendah. Desain mekanisme flapping-wing yang berhasil dihasilkan dari penelitian ini menggunakan mekanisme four-bar linkage, dengan dua buah reduction gear untuk masing-masing sayap. Gerakan mekanisme flapping-wing dibangkitkan oleh DC motor berukuran diameter 7 mm. Rasio pinion dan reduction gear yang digunakan adalah 9:1. Pembuatan desain dan simulasi mekanisme dilakukan pada perangkat lunak CAD. Pembuatan prototipe mekanisme flapping-wing dan sayap tiruan dilakukan dengan 3D printer. Pada akhir penelitian dilakukan pengukuran sudut kepakan mekanisme flapping-wing yang sudah dibuat pada frekuensi kepakan 10 Hz. Hasil pengukuran menunjukkan prototipe yang dibuat memberikan sudut kepakan sebesar 125o, dengan sudut upstroke sebesar 75o dan sudut downstroke sebesar 50o.
Menghitung Besar Biaya (Cost) Dari Perancangan Perawatan Menggunakan Metode Reliability Centered Maintenance Pada Fuel Boost Pump Pesawat Boeing 737-400 Octaline Putri Efma; Reo Yudhono; Arfie Armelia Erissonia; Ferry Setiawan
Jurnal Mahasiswa Kreatif Vol. 1 No. 5 (2023): September : Jurnal Mahasiswa Kreatif
Publisher : Lembaga Pengembangan Kinerja Dosen

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59581/jmk-widyakarya.v1i5.1199

Abstract

This study aims to know the cost of designing maintenance using the Reliability Centered Maintenance method. Engine and fuel control, is a fuel engine system and fuel control system; in charge of distributing and measuring fuel from the fuel storage tank, to the combustion chamber. Gas turbine or component area (Combustor), functions as a distributor of fuel used in aircraft systems and plays a role in carrying out its operation (Boeing 737-400 Aircraft Maintenance Manual). Reliability is the possibility of a component or system to be able to operate and/or carry out its functions. The function has been assigned to certain operating conditions and in a certain environment for a predetermined period of time. Thus, reliability is the probability that it will not fail or be able to perform its function for a period of time (t) or more. In the analysis of preventive maintenance financing, which is carried out when the reliability value reaches 70%, 60% and 50%, respectively, it is obtained for each component.
Analisis Pemeliharaan Menggunakan Metode Reliability pada Sistem Gas Turbine Engine untuk Mengetahui Kinerja Engine Turbofan CFM56-3 pada Pesawat Boeing 737-500 Asrul Sani; Reo Yudhono; Arfie Armelia Erissonia
Venus: Jurnal Publikasi Rumpun Ilmu Teknik  Vol. 2 No. 5 (2024): Oktober: Jurnal Publikasi Rumpun Ilmu Teknik
Publisher : Asosiasi Riset Ilmu Teknik Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61132/venus.v2i5.583

Abstract

In carrying out structured maintenance, a method is needed to increase the durability of an aircraft component, one of the methods used is the reliability method. The reliability of aircraft components is very necessary to ensure that each aircraft component is serviceable and runs according to its function in the aircraft system, so to increase the reliability of an aircraft component, the reliability method is very important to do. This study aims to determine the critical life time limit of the asset or system or equipment function and identify the failure mode that occurs in the Gas Turbine Engine component of the Boeing 737-500 aircraft because if this engine fails, it can result in flight delays and if not handled immediately can cause the aircraft to experience Aircraft on Ground (AOG) conditions, because it has the potential to disrupt airworthiness and threaten safety. This study uses exploratory research which aims to simplify problems to make them easier to solve. This study uses the Pareto diagram method to determine the highest type of failure in components, then analyzes it using the failure mode effect analysis (FMEA) method. Based on FMECA and FTA analysis, there are 3 failure modes, the failure modes include mechanical system (Bleed Valve), pneumatic system (Butterfly Shaft), electrical system (actuator). The failure was due to the occurrence of the top event part consumable, namely the bleed valve part with an RPN value of 192, followed by the butterfly shaft part with an RPN value of 75 and the Actuator part with an RPN value of 72. The pneumatic system and electrical system categories are prioritized to carry out preventive maintenance, which means it is a solution from industry players in an effort to maximize maintenance of the turbofan engine system accompanied by technical or economic analysis to ensure a system in extending the service life of parts in the aircraft system.