Lusi Nur Rahmawati
Departemen Matematika Institut Teknologi Sepuluh Nopember Surabaya

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Penerapan Metode Kalman Filter dalam Estimasi Harga Saham Menggunakan Model ARCH-GARCH Lusi Nur Rahmawati; Mardlijah Mardlijah; Amirul Hakam
Jurnal Sains dan Seni ITS Vol 12, No 1 (2023)
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM), ITS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12962/j23373520.v12i1.96240

Abstract

Saham merupakan produk pasar modal yang menjadi salah satu instrumen investasi. Banyak investor yang memilih saham sebagai instrumen investasi dikarenakan saham memberikan keuntungan yang menarik. Metode estimasi merupakan metode yang tepat bagi para investor untuk memprediksi harga saham sehingga dapat membantu mengoptimalkan keuntungannya. Penelitian ini bertujuan untuk menentukan model terbaik dari data harga saham menggunakan model ARCH-GARCH dan mendapatkan hasil estimasi harga saham menggunakan metode Kalman Filter dengan model ARCH-GARCH untuk periode selanjutnya. Adapun data harga saham yang digunakan yaitu data harga saham PT. Telkom Indonesia Tbk yang diambil dari website resmi Yahoo Finance. Data yang diambil adalah data harga saham saat penutupan (close) periode 29 Februari 2020 sampai 31 Agustus 2021. Pada data harga saham digunakan model ARIMA (Autoregressive Integrated Moving Average) dan terdeteksi terdapat unsur heteroskedastisitas, sehingga digunakan model time series ARCH-GARCH (Autoregressive Conditional Heteroskedasticity Generalized Autoregressive Conditional Heteroskedasticity). Didapatkan model terbaik yaitu GARCH (1,1) dengan model ARIMA (2,1,3). Pada penerapan metode Kalman Filter didapatkan hasil estimasi harga saham lebih akurat yaitu mendekati data aktual yang ditandai dengan nilai MAPE (Mean Absolute Percentage Error) pada GARCH-Kalman Filter lebih kecil dibandingkan nilai MAPE pada model GARCH (1,1).