Aminul Haque
Daffodil International University

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Improved vision-based diagnosis of multi-plant disease using an ensemble of deep learning methods Rashidul Hasan Hridoy; Arindra Dey Arni; Aminul Haque
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 5: October 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i5.pp5109-5117

Abstract

Farming and plants are crucial parts of the inward economy of a nation, which significantly boosts the economic growth of a country. Preserving plants from several disease infections at their early stage becomes cumbersome due to the absence of efficient diagnosis tools. Diverse difficulties lie in existing methods of plant disease recognition. As a result, developing a rapid and efficient multi-plant disease diagnosis system is a challenging task. At present, deep learning-based methods are frequently utilized for diagnosing plant diseases, which outperformed existing methods with higher efficiency. In order to investigate plant diseases more accurately, this article addresses an efficient hybrid approach using deep learning-based methods. Xception and ResNet50 models were applied for the classification of plant diseases, and these models were merged using the stacking ensemble learning technique to generate a hybrid model. A multi-plant dataset was created using leaf images of four plants: black gram, betel, Malabar spinach, and litchi, which contains nine classes and 44,972 images. Compared to existing individual convolutional neural networks (CNN) models, the proposed hybrid model is more feasible and effective, which acquired 99.20% accuracy. The outcomes and comparison with existing methods represent that the designed method can acquire competitive performance on the multi-plant disease diagnosis tasks.
PithaNet: a transfer learning-based approach for traditional pitha classification Shahriar Shakil; Atik Asif Khan Akash; Nusrat Nabi; Mahmudul Hassan; Aminul Haque
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 5: October 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i5.pp5431-5443

Abstract

Pitha, pithe, or peetha are all Bangla words referring to a native and traditional food of Bangladesh as well as some areas of India, especially the parts of India where Bangla is the primary language. Numerous types of pithas exist in the culture and heritage of the Bengali and Bangladeshi people. Pithas are traditionally prepared and offered on important occasions in Bangladesh, such as welcoming a bride grooms, or bride, entertaining guests, or planning a special gathering of family, relatives, or friends. The traditional pitha celebration and pitha culture are no longer widely practiced in modern civilization. Consequently, the younger generation is unfamiliar with our traditional pitha culture. In this study, an effective pitha image classification system is introduced. convolutional neural network (CNN) pre-trained models EfficientNetB6, ResNet50, and VGG16 are used to classify the images of pitha. The dataset of traditional popular pithas is collected from different parts of Bangladesh. In this experiment, EfficientNetB6 and ResNet50 show nearly 90% accuracy. The best classification result was obtained using VGG16 with 92% accuracy. The main motive of this study is to revive the Bengali pitha tradition among young people and people worldwide, which will encourage many other researchers to pursue research in this domain.