Claim Missing Document
Check
Articles

Found 2 Documents
Search

Adaptive traffic lights based on traffic flow prediction using machine learning models Idriss Moumen; Jaafar Abouchabaka; Najat Rafalia
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 5: October 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i5.pp5813-5823

Abstract

Traffic congestion prediction is one of the essential components of intelligent transport systems (ITS). This is due to the rapid growth of population and, consequently, the high number of vehicles in cities. Nowadays, the problem of traffic congestion attracts more and more attention from researchers in the field of ITS. Traffic congestion can be predicted in advance by analyzing traffic flow data. In this article, we used machine learning algorithms such as linear regression, random forest regressor, decision tree regressor, gradient boosting regressor, and K-neighbor regressor to predict traffic flow and reduce traffic congestion at intersections. We used the public roads dataset from the UK national road traffic to test our models. All machine learning algorithms obtained good performance metrics, indicating that they are valid for implementation in smart traffic light systems. Next, we implemented an adaptive traffic light system based on a random forest regressor model, which adjusts the timing of green and red lights depending on the road width, traffic density, types of vehicles, and expected traffic. Simulations of the proposed system show a 30.8% reduction in traffic congestion, thus justifying its effectiveness and the interest of deploying it to regulate the signaling problem in intersections.
Enhancing Hadoop distributed storage efficiency using multi-agent systems Rabie Mahdaoui; Manar Sais; Jaafar Abouchabaka; Najat Rafalia
Indonesian Journal of Electrical Engineering and Computer Science Vol 34, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v34.i3.pp1814-1822

Abstract

Distributed storage systems play a pivotal role in modern data-intensive applications, with Hadoop distributed file system (HDFS) being a prominent example. However, optimizing the efficiency of such systems remains a complex challenge. This research paper presents a novel approach to enhance the efficiency of distributed storage by leveraging multi-agent systems (MAS). Our research is centered on enhancing the efficiency of the HDFS by incorporating intelligent agents that can dynamically assign storage tasks to nodes based on their performance characteristics. Utilizing a decentralized decision-making framework, the suggested approach based on MAS considers the real-time performance of nodes and allocates storage tasks adaptively. This strategy aims to alleviate performance bottlenecks and minimize data transfer latency. Through extensive experimental evaluation, we demonstrate the effectiveness of our approach in improving HDFS performance in terms of data storage, retrieval, and overall system efficiency. The results reveal significant reductions in job execution times and enhanced resource utilization, there by offering a promising avenue for enhancing the efficiency of distributed storage systems.