Claim Missing Document
Check
Articles

Found 2 Documents
Search

Quantum computing approach in uncertain data optimization problem for vehicle routing problem Patrisia Teresa Marsoit; Liu Wang Zhang; Deodoro Lakonde; Firta Sari Panjaitan
International Journal of Enterprise Modelling Vol. 15 No. 3 (2021): Sep: Enterprise Modelling: Quantum computing
Publisher : International Enterprise Integration Association

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (519.285 KB) | DOI: 10.35335/emod.v15i3.52

Abstract

This research addresses the Vehicle Routing Problem (VRP) with uncertain data and proposes a novel approach using quantum computing techniques. The problem involves optimizing vehicle routes considering uncertain customer demands, time windows, and vehicle capacities. We formulate the problem mathematically and develop an algorithmic framework to tackle it. The approach incorporates multiple scenarios based on the uncertainty distribution and selects the one with the minimum cost to optimize the vehicle routes. Through a numerical example, we demonstrate the effectiveness of the proposed approach in generating optimal routes that minimize the total distance traveled by the vehicles. The results highlight the solution quality, adaptability to uncertainty, and potential benefits in terms of cost reduction and resource utilization. While the computational efficiency of quantum computing approaches is a consideration, this research provides a promising direction for addressing uncertain optimization problems in logistics and transportation. Future research should focus on scalability and refinement of the algorithm to further enhance its applicability in real-world scenarios.
Hybrid approach for adaptive fuzzy grid partitioning and rule generation using rough set theory Pa Liu Zheng; Liu Wang Zhang; Li Wang Cheng; Koscik Xue Huang
International Journal of Enterprise Modelling Vol. 16 No. 1 (2022): Jan: Enterprise Modelling
Publisher : International Enterprise Integration Association

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (471.649 KB) | DOI: 10.35335/emod.v16i1.53

Abstract

This research proposes a hybrid approach for adaptive fuzzy grid partitioning and rule generation using rough set theory to address the problem of customer segmentation based on purchasing behavior. The objective is to minimize the fuzziness of the partitioning while maximizing the accuracy and interpretability of the generated rules. The research utilizes a dataset consisting of customer transactions, including demographics, purchase details, and satisfaction ratings. The fuzzy grid partitioning process divides the customer space into grid cells, representing different segments. Fuzzy membership values are assigned to data points based on their association with each grid cell. Rough set theory is employed for attribute reduction, identifying the most relevant attributes for customer segmentation. Rule induction algorithms generate rules that capture the patterns and dependencies among customer attributes and their association with specific grid cells. The hybrid approach combines the advantages of adaptive fuzzy grid partitioning and rough set-based rule generation. The optimization process adjusts fuzzy membership values and refines the generated rules to improve accuracy and interpretability. A numerical example and a case study in the retail industry are presented to demonstrate the effectiveness of the proposed approach. Results show successful customer segmentation and generation of actionable rules for marketing strategies. The research contributes to the field of customer segmentation by providing a comprehensive methodology that integrates adaptive fuzzy grid partitioning and rule generation using rough set theory. The hybrid approach offers valuable insights into customer behavior, enabling targeted marketing campaigns, personalized recommendations, and enhanced customer satisfaction.