Cucut Hariz Pratomo
Informatics, Universitas Muhammadiyah Karanganyar

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Mushroom Image Classification Using C4.5 Algorithm Cucut Hariz Pratomo; Widyastuti Andriyani
Journal of Intelligent Software Systems Vol 2, No 1 (2023): July
Publisher : LPPM UTDI (d.h STMIK AKAKOM) Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26798/jiss.v2i1.930

Abstract

This study applied five types of Mushrooms, they are Button mushrooms, Wood Ear mushrooms, Straw mushrooms, Reishi mushrooms and Red Oyster mushrooms. The feature extraction used is Order 1 with the parameters of mean, skewness, variance, kurtosis, and entropy. The process carried out to identify mushroom images by preparing image objects. There were 15 images of each mushroom class were taken for each mushroom and stored in .jpg format. The image processing is carried out by a feature extraction process. Then five images for each mushroom class are chosen. They were used as test images which will be classified so that identification results are obtained. This study applies the Classification Algorithm C4.5 to build a decision tree, which will also identify the results of the accuracy of processed mushroom images. The obtained result of accuracy was 84% in the classification of feature extraction Order 1