Claim Missing Document
Check
Articles

Found 3 Documents
Search

PENYULUHAN PENINGKATAN EKSPOR BATIK MENUJU PASAR GLOBAL BERKELANJUTAN DI KAMPUNG REJOMULYO Pramono, Renjiro Azhar; Trisnapradika, Gustina Alfa; Adhy, Bagaskara Bayu; Prawesty, Ganis Fatimah Diaz; Sutrisno, Hendra; Putra, Ricky Primayuda
Abdi Masya Vol 4 No 2
Publisher : Pusat Penelitian dan Pengabdian Masyarakat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52561/abma.v4i2.308

Abstract

Batik Semarangan, sebagai produk budaya khas Semarang, memiliki potensi untuk mendapatkan popularitas dan apresiasi yang lebih luas. Dalam rangka mendukung tujuan ini, kami menjalin kerjasama dengan Lembaga Bea Cukai untuk mengembangkan dan memasarkan produk batik dari Kampung Rejomulyo ke pasar global yang berkelanjutan. Pengabdian ini berfokus pada aspek-aspek penting dalam bidang pengabdian kepada masyarakat, seperti pelatihan bagi para pemilik toko batik, peningkatan proses produksi, penerapan prinsip-prinsip Teknologi Tepat Guna (TTG), desain yang mengikuti tren, serta strategi penyebaran teknologi. Kerjasama yang kuat antara para pemilik toko batik dan Lembaga Bea Cukai membentuk suatu pola yang dapat memajukan industri kreatif lokal secara berkelanjutan. Hasil dari kegiatan ini memberikan dampak positif pada seluruh peserta serta pemilik toko batik yang hadir. Sebesar 77% peserta telah memahami dan mengetahui langkah-langkah dalam melakukan kegiatan ekspor, peraturan yang mengatur kegiatan ekspor, serta terbukanya peluang potensi baru untuk UMKM yang ada di Kampung Rejomulyo.
Klasifikasi Kategori Produk untuk Manajemen Keuangan Remaja menggunakan Algoritma Long Short-Term Memory Sutrisno, Hendra; Winarsih, Nurul Anisa Sri
Jurnal Pendidikan Informatika (EDUMATIC) Vol 8 No 2 (2024): Edumatic: Jurnal Pendidikan Informatika
Publisher : Universitas Hamzanwadi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29408/edumatic.v8i2.27959

Abstract

Generation Z often faces difficulties in managing their finances due to impulsive spending habits and a lack of financial planning, which can lead to long-term issues such as overspending and minimal savings. This research aims to develop a category classification model that can be integrated into a financial tracking application to help young people manage their money more effectively. The main feature of the application is an automated system that classifies product names into expense categories such as food, transportation, and shopping using a Long Short-Term Memory (LSTM) model. LSTM was chosen for its ability to understand word sequences and text context, which is essential in product grouping. The dataset used consists of 4,499 product entries divided into three categories: 1,488 for food, 1,682 for transportation, and 1,329 for shopping. The model was trained using a supervised learning approach, with data split for training and testing. The model achieved 86% accuracy on both validation and test data, with additional metrics such as precision, recall, and F1-score indicating good performance. This study contributes by applying innovative preprocessing techniques and oversampling to address data imbalance, which is expected to enhance the model's accuracy in classifying expenses.
Capital Optical Character Recognition Using Neural Network Based on Gaussian Filter Astuti, Erna Zuni; Sari, Christy Atika; Syabilla, Mutiara; Sutrisno, Hendra; Rachmawanto, Eko Hari; Doheir, Mohamed
Scientific Journal of Informatics Vol 10, No 3 (2023): August 2023
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v10i3.43438

Abstract

Purpose: As digital technology advances, society needs to convert physical text into digital text. There are now many methods available for doing this. One of them is OCR (Optical Character Recognition), which can scan images [1]–[4] containing writing and turn them into digital text, making it easier to copy written text from an image. Text recognition in images is complex due to variations in text size, color, font, orientation, background, and lighting conditions.Methods: The technique of text recognition or optical character recognition (OCR) in images can be done using several methods, one of which is a neural network or artificial neural network. The artificial neural network method can help a computer make intelligent decisions with limited human assistance. Intelligent decisions can be made because the neural network can learn and model the relationship between nonlinear and complex input and output data. In this research, the scaled conjugated gradient is applied for optimization. SCG is very effective in finding the minimum value of a complex function, but it takes longer than some other optimization algorithms.Result/Findings: The dataset used is an image with a size of 28 x 28 which is changed in dimension to 784 x 1. This research uses 4000 epochs and obtained the best validation result at epoch 3506 with a value of 0.0087446. Results: From the statistical test results, the effect of perceived usefulness on ease of use has the highest level of influence, obtaining a test value of 3.6. Furthermore, the effect of the attitude towards using on the behavioral intention to use has the lowest level of influence, which obtained a test value of 1.2.Novelty:  In this article, Gaussian filter is used as feature extraction to improve yield. Character detection results using a Gaussian filter are known to be almost 10% higher than those using only a neural network. The result with the Neural Network alone is 82.2%, while the Neural Network-Gaussian Filter produces 92.1%.