Claim Missing Document
Check
Articles

Found 2 Documents
Search

Implementasi Algoritma Apriori untuk Menentukan Paket Bundel dalam Penjualan Toko Swalayan XYZ Mayland Trifena; Khoirunnisa Hamidah; Yuyun Umaidah; Apriade Voutama
Journal Sensi: Strategic of Education in Information System Vol 9 No 2 (2023): Journal Sensi
Publisher : UNIVERSITAS RAHARJA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33050/sensi.v9i2.2912

Abstract

Penjualan paket bundel menjadi strategi pemasaran yang populer di toko swalayan XYZ untuk meningkatkan penjualan dan kepuasan pelanggan. Namun, menentukan kombinasi optimal dari produk-produk yang akan disertakan dalam paket bundel dapat menjadi tugas yang rumit. Oleh karena itu, penelitian ini mengusulkan implementasi algoritma Apriori untuk membantu toko swalayan XYZ dalam menentukan paket bundel yang paling efektif berdasarkan data penjualan. Metode Apriori digunakan untuk mengekstraksi aturan asosiasi dari data penjualan historis. Data penjualan termasuk informasi tentang produk-produk yang dibeli oleh pelanggan secara bersamaan. Algoritma Apriori akan mengidentifikasi kombinasi produk yang sering dibeli bersamaan, sehingga dapat digunakan untuk menentukan paket bundel yang menarik bagi pelanggan. Hasil dari penelitian ini menunjukkan bahwa mayoritas pelanggan yang membeli makanan juga membeli Air Mineral, dengan confident tertinggi sebesar 51,7% dan lift sebesar 2,2. Informasi ini dapat digunakan oleh Swalayan XYZ untuk membuat paket bundel yang menggabungkan makanan dan Air Mineral. Dengan menyusun paket bundel ini, Swalayan XYZ dapat memanfaatkan pola pembelian pelanggan yang teridentifikasi melalui analisis asosiasi untuk meningkatkan penjualan dan memberikan nilai tambah kepada pelanggan.
Prediksi Penerimaan Mahasiswa Baru Universitas Singaperbangsa Karawang dengan Naive Bayes Ganes Wisnu Cahya Bagaskara; Milla Rochmawati; Ismai Adhiya Adha; Mayland Trifena
Journal Sensi: Strategic of Education in Information System Vol 9 No 2 (2023): Journal Sensi
Publisher : UNIVERSITAS RAHARJA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33050/sensi.v9i2.2913

Abstract

Sistem pendukung keputusan merupakan alat penting dalam proses pengambilan keputusan yang efektif dan efisien. Dalam konteks pendidikan, prediksi penerimaan mahasiswa baru menjadi salah satu aspek penting dalam pengelolaan sebuah universitas. Penelitian ini bertujuan merancang sebuah sistem pendukung dalam mengambil keputusan dengan metode Naive Bayes dalam memprediksi penerimaan mahasiswa baru di Universitas Singaperbangsa Karawang.Kriteria yang telah ditetapkan untuk diterima di universitas ini meliputi asal sekolah calon mahasiswa, nilai akhir ujian, daya tampung universitas, peluang penerimaan, dan profil calon mahasiswa. Penyelesaian kriteria tersebut dilakukan melalui teknik Data Mining dengan metode Naive Bayes. Dataset yang digunakan dalam penelitian ini berupa Data Set dengan jumlah sebanyak 816 data. Berdasarkan uji coba menggunakan data tes SNBT, metode Naive Bayes berhasil mengklasifikasikan 4 dari 816 data yang diuji, dengan akurasi prediksi mencapai 97,79%, persentase tertinggi dalam memprediksi penerimaan mahasiswa baru. Dengan memanfaatkan sistem pendukung keputusan ini, universitas dapat melakukan prediksi penerimaan mahasiswa baru dengan akurasi tinggi, mempermudah pengambilan keputusan terkait penerimaan mahasiswa baru, meningkatkan efisiensi proses seleksi, dan mengurangi kesalahan dalam proses tersebut.