Abdurraghib Segaf Suweleh
Universitas Bumigora, Mataram, Indonesia

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Penanganan Ketidak Seimbangan Kelas Menggunakan Pendekatan Level Data Abdurraghib Segaf Suweleh; Dyah Susilowaty; Hairani Hairani; Khairan Marzuki
MATRIK : Jurnal Manajemen, Teknik Informatika dan Rekayasa Komputer Vol 20 No 1 (2020)
Publisher : LPPM Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (309.65 KB) | DOI: 10.30812/matrik.v20i1.846

Abstract

Setiap tahun bagian kemahasiswaan Universitas Bumigora melakukan seleksi mahasiswa yang berhak mendapatkan Beasiswa Peningkatan Prestasi Akademik (Beasiswa PPA). Dalam proses seleksi pemilihan penerima Beasiswa PPA terdapat permasalahan seperti kesulitan dalam menentukan mahasiswa yang berhak menerima beasiswa, dikarenakan jumlah kuota beasiswa lebih sedikit dibandingkan jumlah mahasiswa yang mendaftar beasiswa. Kumpulan data hasil seleksi Beasiswa PPA sebanyak 150 instance. Terdapat ketidak seimbangan kelas pada data yang digunakan yaitu 85 instance kelas tidak layak dan 65 instance kelas layak. Solusi yag ditawarkan adalah menggunakan pendekatan level data untuk menyeimbangkan kelasnya seperti metode SMOTE dan k-means-SMOTE. Adapun tujuan penelitian ini adalah menangani permasalahan ketidak seimbangan kelas pada data beasiswa PPA Universitas Bumigora menggunakan pendekatan level data untuk meningkatkan kinerja metode C4.5. Tahapan-tahapan penelitian ini terdiri dari pengumpulan data Beasiswa PPA, data preprocesing, klasifikasi, dan pengujian kinerja. Berdasarkan hasil pengujiannya, pendekatan level data menggunakan metode k-means-SMOTE dan metode C4.5 memiliki kinerja terbaik untuk klasifikasi penerima Beasiswa PPA dengan akurasi 81.3%, sensitivitas 84.9%, dan spesifisitas 77.6%. Dengan demikian, metode k-mean-SMOTE dan metode C4.5 memiliki kinerja terbaik berdasarkan akurasi, sensitivitas, dan spesifisitas.