Pizaini Pizaini
Universitas Islam Negeri Sultan Syarif Kasim, Pekanbaru

Published : 1 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 1 Documents
Search

Penerapan Algoritma C4.5 Mengklarifikasi Penerimaan Bantuan Sosial Menggunakan Feature Selection M Wandi Dwi Wirawan; Siska Kurnia Gusti; Jasril Jasril; Pizaini Pizaini
Jurnal Sistem Komputer dan Informatika (JSON) Vol 5, No 1 (2023): September 2023
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/json.v5i1.6653

Abstract

The Indonesian government's efforts to overcome poverty in Indonesia are through the Smart Indonesia Card (KIP) program which is carried out by the government in the form of providing assistance to underprivileged families. The main aim of distributing KIP assistance is to help send underprivileged children to continue their education, the difficulties found in receiving KIP are due to the large number of residents registering, as well as the data having several conditions, the limited time available in providing KIP by sub-district parties, the completion base is relatively low, therefore the provision of assistance must be right on target. Therefore, the aim of this research is to look for the most influential attributes in receiving KIP assistance in order to improve the results of the data verification process. After carrying out Feature Selection using Information Gain, the most influential attributes can be obtained. The influences are Number of Art, Number of Rooms, Cooking Room, Refrigerator, Motorbike. Therefore, we need to know some of the attributes that most influence the selection of KIP assistance so that we can get accuracy values from decision tree modeling using the C4.5 algorithm or decision tree. Test This experiment can produce a decision tree in which the Number of Art attribute is the most influential attribute with the success rate of KIP acceptance. This evaluation uses a confusion matrix to obtain an accuracy value of 98.21%, precision of 98.21%, recall of 99.48%.